Implementation in Advised Strategies:
Welfare Guarantees from Posted-Price Mechanisms when Demand Queries are NP-hard

Linda Cai, Clayton Thomas, Matt Weinberg
Princeton University
July 12, 2023
Model: n bidders, m items.

- Each bidder i has valuation function $v_i: 2^m \rightarrow \mathbb{R}^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards items S_i to bidder i, charges price p_i.

Goal: Maximizes welfare $= \sum_i v_i(S_i)$.

α-approximation: guarantees $\sum_i v_i(S_i) \geq \alpha \cdot \text{OPT}$.

Question: What welfare can a mechanism guarantee when agents are self-interested and strategic?

A mechanism is truthful if for all $v_1(\cdot), ..., v_n(\cdot)$, it is in a bidder's interest to be truthful regardless of what others do.
Combinatorial Auctions

Model: n bidders, m items.
- Each bidder i has valuation function $v_i : 2^m \rightarrow R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards items S_i to bidder i, charges price p_i.

Goal: Maximizes welfare $= \sum_i v_i(S_i)$.
- α-approximation: guarantees $\sum_i v_i(S_i) \geq \alpha OPT$.

Question: What welfare can a mechanism guarantee when agents are self-interested and strategic?

- A mechanism is **truthful** if for all $v_1(\cdot) \ldots v_n(\cdot)$, it is in a bidder's interest to be truthful regardless of what others do.
Combinatorial Auctions

Model: n bidders, m items.

- Each bidder i has valuation function $v_i : 2^m \rightarrow R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards items S_i to bidder i, charges price p_i.

Goal: Maximizes welfare $= \sum_i v_i(S_i)$.

- α-approximation: guarantees $\sum_i v_i(S_i) \geq \alpha \cdot OPT$.

Question: What welfare can a mechanism guarantee when agents are self-interested and strategic?

- A mechanism is truthful if for all $v_1(\cdot) \ldots v_n(\cdot)$, it is in a bidder’s interest to be truthful regardless of what others do.
Combinatorial Auctions

Constraints on Mechanisms:

- Computationally-efficient: auctioneer and bidders can only compute functions in \mathbb{P}
- Communication-efficient: auctioneer and bidders can only communicate $\text{poly}(m, n)$ bits
Combinatorial Auctions

Constraints on Mechanisms:

- Computationally-efficient: auctioneer and bidders can only compute functions in \mathbb{P}
- Communication-efficient: auctioneer and bidders can only communicate $\text{poly}(m, n)$ bits

Constraints on valuation functions: submodular \subset XOS

- submodular: for all sets X, Y, $\nu(X \cup Y) + \nu(X \cap Y) \leq \nu(X) + \nu(Y)$
- XOS (fractionally subadditive): let L be a set of additive functions. Then $\forall S \subset [m], \nu(S) = \max_{\nu_l \in L} \nu_l(S)$.

<table>
<thead>
<tr>
<th></th>
<th>submodular</th>
<th>XOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>$\Omega(m^{1/2-\epsilon})$ [DV16]</td>
<td>$\Omega(m^{1/2-\epsilon})$ [DV16]</td>
</tr>
<tr>
<td>Communication</td>
<td>$O((\log \log m)^3)$ [AS19]</td>
<td>$O((\log \log m)^3)$ [AS19]</td>
</tr>
</tbody>
</table>
Combinatorial Auctions

Constraints on Mechanisms:

• Computationally-efficient: auctioneer and bidders can only compute functions in \(P \)
• Communication-efficient: auctioneer and bidders can only communicate \(\text{poly}(m, n) \) bits

Constraints on valuation functions: submodular \(\subset \) XOS

• submodular: for all sets \(X, Y \), \(v(X \cup Y) + v(X \cap Y) \leq v(X) + v(Y) \)
• XOS (fractionally subadditive): let \(L \) be a set of additive functions. Then \(\forall S \subset [m], v(S) = \max_{v_l \in L} v_l(S) \).

<table>
<thead>
<tr>
<th></th>
<th>submodular</th>
<th>XOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>(\Omega(m^{1/2-\epsilon})) [DV16]</td>
<td>(\Omega(m^{1/2-\epsilon})) [DV16]</td>
</tr>
<tr>
<td>Communication</td>
<td>(O((\log \log m)^3)) [AS19]</td>
<td>(O((\log \log m)^3)) [AS19]</td>
</tr>
</tbody>
</table>

Why is there a separation between computationally-efficient and communication-efficient truthful mechanisms?
Motivation

XOS Bidder Combinatorial Auctions

- n buyer, m items, bidder valuation functions are XOS
- Goal: maximize welfare
Motivation

XOS Bidder Combinatorial Auctions

- \(n \) buyer, \(m \) items, bidder valuation functions are XOS
- Goal: maximize welfare

Communication model:

- State of the art truthful mechanism “Price Learning Mechanism”[AS19] is at its core a posted price mechanism:
 - visits bidders one at a time, posts a price \(p_j \) on each remaining item \(j \)
 - offers the option to purchase any set \(S \) of items, here bidders pick set that maximize utility (called demand query, NP-hard to compute)
Motivation

XOS Bidder Combinatorial Auctions

- n buyer, m items, bidder valuation functions are XOS
- Goal: maximize welfare

Communication model:
- State of the art truthful mechanism “Price Learning Mechanism” [AS19] is at its core a posted price mechanism:
 - visits bidders one at a time, posts a price p_j on each remaining item j
 - offers the option to purchase any set S of items, here bidders pick set that maximize utility (called demand query, NP-hard to compute)

Computation model:
- NP-hard for truthful mechanisms to achieve a $m^{1/2-\epsilon}$-approximation for any $\epsilon > 0$ [DV16]
- \sqrt{m}-approximation algorithm is tight [DNS10]
Motivation

Submodular Bidder Combinatorial Auctions

- n buyer, m items, bidder valuation functions are submodular
- Goal: maximize welfare

Communication model:

- State of the art truthful mechanism “Price Learning Mechanism” [AS19] is at its core a posted price mechanism:
 - visits bidders one at a time, posts a price p_j on each remaining item j
 - offers the option to purchase any set S of items, here bidders pick set that maximize utility (called demand query, NP-hard to compute)

Computation model:

- NP-hard for truthful mechanisms to achieve a $m^{1/2-\epsilon}$-approximation for any $\epsilon > 0$ [DV16]
- exists $e/(e - 1)$-approximation algorithm [Von08]
Motivation

Simpler example: one buyer combinatorial public project

- 1 buyer, m items
- the buyer can only receive k out of the m items
- Goal: maximize welfare
Simpler example: one buyer combinatorial public project

- 1 buyer, \(m \) items
- the buyer can only receive \(k \) out of the \(m \) items
- Goal: maximize welfare

Communication model:

- Truthful mechanism “Set-For-Free”: let bidder pick any \(k \)-set they like achieves optimal welfare
Motivation

Simpler example: one buyer combinatorial public project

• 1 buyer, \(m \) items
• the buyer can only receive \(k \) out of the \(m \) items
• Goal: maximize welfare

Communication model:

• Truthful mechanism “Set-For-Free”: let bidder pick any \(k \)-set they like achieves optimal welfare

Computation model:

• NP-hard for truthful mechanisms to achieve a \(m^{1/2-\epsilon} \)-approximation for any \(\epsilon > 0 \) [SS08]
• Exists poly-time \(e/(e-1) \)-approximation algorithm [NWF78]
A Different Solution Concept

Advice

- Takes input valuation $v_i(\cdot)$ of i and tentative strategy $s(\cdot)$, outputs advised strategy $A^{v_i,s}(\cdot)$ which is either $s(\cdot)$ or one that dominates it.
- Advice is idempotent (applying advice twice is the same as applying advice once).

We say that $s(\cdot)$ is advised for $v_i(\cdot)$ under A if $A^{v_i,s}(\cdot) = s(\cdot)$. A bidder with valuation $v_i(\cdot)$ follows advice A if they use a strategy which is advised under A.
Advice

• Takes input valuation $v_i(\cdot)$ of i and tentative strategy $s(\cdot)$, outputs advised strategy $A^{v_i,s}(\cdot)$ which is either $s(\cdot)$ or one that dominates it

• Advice is idempotent (applying advice twice is the same as applying advice once)

We say that $s(\cdot)$ is advised for $v_i(\cdot)$ under A if $A^{v_i,s}(\cdot) = s(\cdot)$. A bidder with valuation $v_i(\cdot)$ follows advice A if they use a strategy which is advised under A.

Implementation in Advised Strategy

A poly time mechanism guarantees an α-approximation in implementation in advised strategies if there exists poly-time advice for each player such that an α-approximation is achieved whenever all players follow advice.

• *Equivalent to ”Algorithmic Implementation” in [BLP09].
A Different Solution Concept

example: one buyer combinatorial public project

- 1 buyer, \(m \) items
- the buyer can only receive \(k \) out of the \(m \) items
- Goal: maximize welfare
A Different Solution Concept

example: one buyer combinatorial public project

- 1 buyer, m items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

Consider “Set-For-Free” (player pick any k-set) with advice A that
- takes input $v(\cdot)$ and set S
- Runs $e/(e-1)$-approximation algorithm to get set T. Returns $\text{argmax}\{v(S), v(T)\}$
A Different Solution Concept

example: one buyer combinatorial public project

- 1 buyer, m items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

Consider “Set-For-Free” (player pick any k-set) with advice A that

- takes input $v(\cdot)$ and set S
- Runs $e/(e-1)$-approximation algorithm to get set T. Returns $\text{argmax}\{v(S), v(T)\}$

“Set-For-Free” guarantees an $e/(e-1)$-approximation in implementation in advised strategy with advice A.
Main Result

Can “Price Learning Mechanism” be modified into a poly-time mechanism in implementation in advised strategy?

Theorem 1

There exists a poly-time mechanism for submodular welfare maximization guaranteeing $O((\log \log m)^3)$-approximation in implementation in advised strategies with polynomial time computable advice.
Main Result

Can “Price Learning Mechanism” be modified into a poly-time mechanism in implementation in advised strategy?

Theorem 1

There exists a poly-time mechanism for submodular welfare maximization guaranteeing $O((\log \log m)^3)$-approximation in implementation in advised strategies with polynomial time computable advice.

Mechanism Construction Outline:

- Find some notion of approximate demand query for submodular bidders
- Use “Price Learning Algorithm” with approximate demand query as advice
For any $c, d \leq 1$, a c-approximate demand oracle takes as input a valuation function $v(\cdot)$ and a price vector p and outputs a set of items S such that

$$v(S) - p(S) \geq c \cdot \max_T \{v(T) - p(T)\}.$$

[FJ14] It is NP-hard to design a $m^{1-\epsilon}$-approximate demand oracle when $v(\cdot)$ is submodular.
For any $c, d \leq 1$, a (c, d)-approximate demand oracle takes as input a valuation function $v(\cdot)$ and a price vector p and outputs a set of items S such that

$$v(S) - p(S) \geq c \cdot \max_T \{v(T) - p(T)/d\}.$$
Advice: Approximate Demand Oracle

(c, d)-Approximate Demand Oracle

For any \(c, d \leq 1 \), a \((c, d)\)-approximate demand oracle takes as input a valuation function \(v(\cdot) \) and a price vector \(p \) and outputs a set of items \(S \) such that

\[
v(S) - p(S) \geq c \cdot \max_T \{v(T) - p(T)/d\}.
\]

Theorem 2

Let \(\mathcal{V} \) be a subclass of XOS valuations and let \(D \) be a poly-time \((c, d)\)-approximate demand oracle for valuation class \(\mathcal{V} \). Then there exists a poly-time mechanism for welfare maximization when all valuations are in \(\mathcal{V} \) with approximation guarantee

\[
O \left(\max \left\{ \frac{1}{c}, \frac{1}{d} \right\} \cdot (\log \log m)^3 \right)
\]

in implementation in advised strategies with polynomial time computable advice.
Theorem 2

Let \(\mathcal{V} \) be a subclass of XOS valuations and let \(D \) be a poly-time \((c, d)\)-approximate demand oracle for valuation class \(\mathcal{V} \). Then there exists a poly-time mechanism for welfare maximization when all valuations are in \(\mathcal{V} \) with approximation guarantee \(O \left(\max \left\{ \frac{1}{c}, \frac{1}{d} \right\} \cdot (\log \log m)^3 \right) \) in implementation in advised strategies with polynomial time computable advice.

- When \(\mathcal{V} \) is submodular, exists \((\frac{1}{2}, \frac{1}{2})\)-approximate demand oracle
Advice: Approximate Demand Oracle

Theorem 2
Let \mathcal{V} be a subclass of XOS valuations and let D be a poly-time (c, d)-approximate demand oracle for valuation class \mathcal{V}. Then there exists a poly-time mechanism for welfare maximization when all valuations are in \mathcal{V} with approximation guarantee $O\left(\max\left\{ \frac{1}{c}, \frac{1}{d} \right\} \cdot (\log \log m)^3 \right)$ in implementation in advised strategies with polynomial time computable advice.

- When \mathcal{V} is submodular, exists $(\frac{1}{2}, \frac{1}{2})$-approximate demand oracle

Algorithm 2 SimpleGreedy(v, p, M)

$$S \leftarrow \emptyset$$
for $j = 1, \ldots, m$:
 if $v(S \cup \{j\}) - v(S) \geq 2p(j)$:
 $S \leftarrow S \cup \{j\}$
return S
We use the solution concept implementation in advised strategies to show that “Price Learning Mechanism” for submodular welfare maximization maintains its approximation guarantee when buyers follow advice recommended by a (1/2, 1/2)-approximate demand oracle.

- “Implementation in advised strategies” equivalent to “algorithmic implementation” [BLP09], first application since introduction.
- more application out there?
Thank you for listening!