Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms when Demand Queries are NP-hard

Linda Cai, Clayton Thomas, Matt Weinberg

Princeton University

July 12, 2023

Linda Cai, Clayton Thomas, Matt Weinberg Implementation in Advised Strategies:

Model: *n* bidders, *m* items.

- Each bidder *i* has valuation function $v_i : 2^m \to R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards items S_i to bidder i, charges price p_i.

- 4 回 ト - 4 三 ト

Model: *n* bidders, *m* items.

- Each bidder *i* has valuation function $v_i : 2^m \to R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards items S_i to bidder i, charges price p_i.
- **Goal:** Maximizes welfare = $\sum_i v_i(S_i)$.
 - α -approximation: guarantees $\sum_i v_i(S_i) \ge \alpha OPT$.

E Sac

- 4 回 ト 4 三 ト 4 三 ト

Model: *n* bidders, *m* items.

- Each bidder *i* has valuation function $v_i : 2^m \to R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards items S_i to bidder i, charges price p_i.
- **Goal:** Maximizes welfare $= \sum_i v_i(S_i)$.
 - α -approximation: guarantees $\sum_i v_i(S_i) \ge \alpha OPT$.

Question: What welfare can a mechanism guarantee when agents are self-interested and strategic?

• A mechanism is **truthful** if for all $v_1(\cdot)...v_n(\cdot)$, it is in a bidder's interest to be truthful regardless of what others do.

Constraints on Mechanisms:

- \bullet Computationally-efficient: auctioneer and bidders can only compute functions in ${\bf P}$
- Communication-efficient: auctioneer and bidders can only communicate poly(m, n) bits

Constraints on Mechanisms:

- \bullet Computationally-efficient: auctioneer and bidders can only compute functions in ${\bf P}$
- Communication-efficient: auctioneer and bidders can only communicate *poly*(*m*, *n*) bits

Constraints on valuation functions: submodular $\subset XOS$

- submodular: for all sets X, Y, $v(X \cup Y) + v(X \cap Y) \le v(X) + v(Y)$
- XOS (fractionally subadditive): let L be a set of additive functions. Then $\forall S \subset [m], v(S) = \max_{v_l \in L} v_l(S)$.

	submodular	XOS
Computation	$\Omega(m^{1/2-\epsilon})[DV16]$	$\Omega(m^{1/2-\epsilon})$ [DV16]
Communication	$O((\log \log m)^3)$ [AS19]	$O((\log \log m)^3)$ [AS19]

Constraints on Mechanisms:

- Computationally-efficient: auctioneer and bidders can only compute functions in ${\bf P}$
- Communication-efficient: auctioneer and bidders can only communicate *poly*(*m*, *n*) bits

Constraints on valuation functions: $submodular \subset XOS$

- submodular: for all sets X, Y, $v(X \cup Y) + v(X \cap Y) \le v(X) + v(Y)$
- XOS (fractionally subadditive): let L be a set of additive functions. Then $\forall S \subset [m], v(S) = \max_{v_l \in L} v_l(S)$.

	submodular	XOS
Computation	$\Omega(m^{1/2-\epsilon})[DV16]$	$\Omega(m^{1/2-\epsilon})$ [DV16]
Communication	$O((\log \log m)^3)$ [AS19]	$O((\log \log m)^3)$ [AS19]

Why is there a separation between computationally-efficient and communication-efficient truthful mechanisms?

= nac

XOS Bidder Combinatorial Auctions

- *n* buyer, *m* items, bidder valuation functions are **XOS**
- Goal: maximize welfare

< 回 > < 三 > < 三

XOS Bidder Combinatorial Auctions

- *n* buyer, *m* items, bidder valuation functions are **XOS**
- Goal: maximize welfare

Communication model:

- State of the art truthful mechanism "Price Learning Mechanism" [AS19] is at its core a posted price mechanism:
 - visits bidders one at a time, posts a price p_j on each remaining item j
 - offers the option to purchase any set *S* of items, here bidders pick set that maximize utility (called demand query, NP-hard to compute)

XOS Bidder Combinatorial Auctions

- *n* buyer, *m* items, bidder valuation functions are **XOS**
- Goal: maximize welfare

Communication model:

- State of the art truthful mechanism "Price Learning Mechanism" [AS19] is at its core a posted price mechanism:
 - visits bidders one at a time, posts a price p_j on each remaining item j
 - offers the option to purchase any set *S* of items, here bidders pick set that maximize utility (called demand query, NP-hard to compute)

Computation model:

- NP-hard for truthful mechanisms to achieve a $m^{1/2-\epsilon}$ -approximation for any $\epsilon > 0$ [DV16]
- \sqrt{m} -approximation algorithm is tight [DNS10]

Submodular Bidder Combinatorial Auctions

- *n* buyer, *m* items, bidder valuation functions are submodular
- Goal: maximize welfare

Communication model:

- State of the art truthful mechanism "Price Learning Mechanism" [AS19] is at its core a posted price mechanism:
 - visits bidders one at a time, posts a price p_j on each remaining item j
 - offers the option to purchase any set *S* of items, here bidders pick set that maximize utility (called demand query, NP-hard to compute)

Computation model:

- NP-hard for truthful mechanisms to achieve a $m^{1/2-\epsilon}$ -approximation for any $\epsilon > 0$ [DV16]
- exists e/(e-1)-approximation algorithm [Von08]

- 日本 - 4 国本 - 4 国本 - 4 国本

Simpler example: one buyer combinatorial public project

- 1 buyer, *m* items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

A (10) < A (10) < A (10) </p>

Simpler example: one buyer combinatorial public project

- 1 buyer, *m* items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

Communication model:

• Truthful mechanism "Set-For-Free": let bidder pick any *k*-set they like achieves optimal welfare

Simpler example: one buyer combinatorial public project

- 1 buyer, *m* items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

Communication model:

• Truthful mechanism "Set-For-Free": let bidder pick any *k*-set they like achieves optimal welfare

Computation model:

- NP-hard for truthful mechanisms to achieve a $m^{1/2-\epsilon}$ -approximation for any $\epsilon > 0$ [SS08]
- Exists poly-time e/(e-1)-approximation algorithm [NWF78]

イロト イヨト イヨト

Advice

- Takes input valuation v_i(·) of i and tentative strategy s(·), outputs advised strategy A^{v_i,s}(·) which is either s(·) or one that dominates it
- Advice is idempotent (applying advice twice is the same as applying advice once)

We say that $s(\cdot)$ is advised for $v_i(\cdot)$ under A if $A^{v_i,s}(\cdot) = s(\cdot)$. A bidder with valuation $v_i(\cdot)$ follows advice A if they use a strategy which is advised under A.

< (日) × (日) × (1)

Advice

- Takes input valuation v_i(·) of i and tentative strategy s(·), outputs advised strategy A^{v_i,s}(·) which is either s(·) or one that dominates it
- Advice is idempotent (applying advice twice is the same as applying advice once)

We say that $s(\cdot)$ is advised for $v_i(\cdot)$ under A if $A^{v_i,s}(\cdot) = s(\cdot)$. A bidder with valuation $v_i(\cdot)$ follows advice A if they use a strategy which is advised under A.

Implementation in Advised Strategy

A poly time mechanism guarantees an α -approximation in **implementation in advised strategies** if there exists poly-time advice for each player such that an α -approximation is achieved whenever all players follow advice.

• *Equivalent to "Algorithmic Implementation" in [BLP09].

example: one buyer combinatorial public project

- 1 buyer, *m* items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

example: one buyer combinatorial public project

- 1 buyer, *m* items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

Consider "Set-For-Free" (player pick any k-set) with advice A that

- takes input $v(\cdot)$ and set S
- Runs e/(e 1)-approximation algorithm to get set T. Returns argmax {v(S), v(T)}

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

example: one buyer combinatorial public project

- 1 buyer, *m* items
- the buyer can only receive k out of the m items
- Goal: maximize welfare

Consider "Set-For-Free" (player pick any k-set) with advice A that

- takes input $v(\cdot)$ and set S
- Runs e/(e 1)-approximation algorithm to get set T. Returns argmax {v(S), v(T)}

"Set-For-Free" guarantees an e/(e-1)-approximation in implementation in advised strategy with advice A.

イロト イヨト イヨト

Main Result

Can "Price Learning Mechanism" be modified into a poly-time mechanism in implementation in advised strategy?

Theorem 1

There exists a poly-time mechanism for submodular welfare maximization guaranteeing $O((\log \log m)^3)$ -approximation in implementation in advised strategies with polynomial time computable advice.

Main Result

Can "Price Learning Mechanism" be modified into a poly-time mechanism in implementation in advised strategy?

Theorem 1

There exists a poly-time mechanism for submodular welfare maximization guaranteeing $O((\log \log m)^3)$ -approximation in implementation in advised strategies with polynomial time computable advice.

Mechanism Construction Outline:

- Find some notion of approximate demand query for submodular bidders
- Use "Price Learning Algorithm" with approximate demand query as advice

< 回 > < 三 > < 三 >

c-Approximate Demand Oracle

For any $c, d \leq 1$, a *c*-approximate demand oracle takes as input a valuation function $v(\cdot)$ and a price vector \mathbf{p} and outputs a set of items S such that

$$v(S) - \mathbf{p}(S) \ge c \cdot \max_{T} \{v(T) - \mathbf{p}(T)\}.$$

[FJ14] It is NP-hard to design a $m^{1-\epsilon}$ -approximate demand oracle when $v(\cdot)$ is submodular.

周 ト イ ヨ ト イ ヨ ト

(c, d)-Approximate Demand Oracle

For any $c, d \leq 1$, a (c, d)-approximate demand oracle takes as input a valuation function $v(\cdot)$ and a price vector \mathbf{p} and outputs a set of items S such that

$$v(S) - \mathbf{p}(S) \ge c \cdot \max_{T} \{v(T) - \mathbf{p}(T)/d\}.$$

(c, d)-Approximate Demand Oracle

For any $c, d \leq 1$, a (c, d)-approximate demand oracle takes as input a valuation function $v(\cdot)$ and a price vector \mathbf{p} and outputs a set of items S such that

$$v(S) - \mathbf{p}(S) \ge c \cdot \max_{\mathcal{T}} \{v(\mathcal{T}) - \mathbf{p}(\mathcal{T})/d\}.$$

Theorem 2

Let \mathcal{V} be a subclass of XOS valuations and let D be a poly-time (c, d)-approximate demand oracle for valuation class \mathcal{V} . Then there exists a poly-time mechanism for welfare maximization when all valuations are in \mathcal{V} with approximation guarantee $O\left(\max\left\{\frac{1}{c}, \frac{1}{d}\right\} \cdot (\log \log m)^3\right)$ in implementation in advised strategies with polynomial time computable advice.

Theorem 2

Let \mathcal{V} be a subclass of XOS valuations and let D be a poly-time (c, d)-approximate demand oracle for valuation class \mathcal{V} . Then there exists a poly-time mechanism for welfare maximization when all valuations are in \mathcal{V} with approximation guarantee $O\left(\max\left\{\frac{1}{c}, \frac{1}{d}\right\} \cdot (\log \log m)^3\right)$ in implementation in advised strategies with polynomial time computable advice.

• When \mathcal{V} is submodular, exists $(\frac{1}{2}, \frac{1}{2})$ -approximate demand oracle

Theorem 2

Let \mathcal{V} be a subclass of XOS valuations and let D be a poly-time (c, d)-approximate demand oracle for valuation class \mathcal{V} . Then there exists a poly-time mechanism for welfare maximization when all valuations are in \mathcal{V} with approximation guarantee $O\left(\max\left\{\frac{1}{c}, \frac{1}{d}\right\} \cdot (\log \log m)^3\right)$ in implementation in advised strategies with polynomial time computable advice.

• When \mathcal{V} is submodular, exists $(\frac{1}{2}, \frac{1}{2})$ -approximate demand oracle

Algorithm 2 SimpleGreedy(v, p, M)

$$\begin{array}{ll} S \leftarrow \emptyset \\ \text{for} & j = 1, \dots, m: \\ & \text{if} \quad v(S \cup \{j\}) - v(S) \geq 2\mathbf{p}(j): \\ & S \leftarrow S \cup \{j\} \\ & \text{return} \quad S \end{array}$$

Conclusion

We use the solution concept implementation in advised strategies to show that "Price Learning Mechanism" for submodular welfare maximization maintains its approximation guarantee when buyers follow advice recommended by a (1/2, 1/2)-approximate demand oracle.

- "Implementation in advised strategies" equivalent to "algorithmic implementation" [BLP09], first application since introduction.
- more application out there?

- 4 回 ト 4 三 ト 4 三 ト

Thank you for listening!

イロト イヨト イヨト イヨト