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Increasing Machine Learning (ML) Model Size
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Not Enough Memory

• GPUs used in AWS, Google Cloud, and Azure

• Even 32GB GPU insufficient for > 1.3 B parameters [1]

• ML training on memory-constrained devices
• Smartphones, UAVs, drones, etc.

[1] https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

GPU P4 M60 K80 P100 T4 V100
Memory 8 GB 8 GB 12 GB 12/16 GB 16 GB 16/32 GB
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ML Model Graph

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


Multi-GPU Training: Model Parallelism
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How to place ML operators on devices?



Why Does Device Placement Matter?

• ML Training repeats training steps of updating parameters

• Step time: Elapsed time for a single training step of the placed ML model

• Bad placement ⟹ Step time ↑ (communication overhead ↑, no parallelism)
• Slow placement time ⟹ Entire training time ↑ (placement + training)

• Goal: Place a ML model fast (low placement time) and well (low step time)
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Prior Work

• Expert-designed Approach
• E.g. Google Neural Machine Translation (GNMT) [2]
• Require domain knowledge and significant manual efforts

• Learning-based Approaches
• Reinforcement learning (RL)
• E.g., ColocRL [3], HierarchicalRL [4], Placeto [5]
• Require very long time to place ML models (2 hours ∼ 3 days)
• Require re-training on different ML models and varying environment
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[2] Wu et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144.
[3] Mirhoseini et al. Device Placement Optimization with Reinforcement Learning. ICML '17.
[4] Mirhoseini et al. Hierarchical Planning for Device Placement, ICLR ’18.
[5] Addanki et al. Learning Generalizable Device Placement Algorithms for Distributed Machine Learning. NeurIPS '19.



Baechi

• ML placement system that incorporates algorithmic approaches into TensorFlow
• Our contributions

• Placement algorithms for memory-constrained environments
• Memory-constrained Earliest Task First (m-ETF)
• Memory-constrained Small Communication Time (m-SCT)

• Provably within a constant factor of the optimal execution time*
• Memory-constrained Topological Sort (m-TOPO) [strawman]

• Optimizations
• Co-adjust Placement, Co-placement, Operator Fusion, Sequential Communication Support

• Place quickly: 654–206K× faster placement time than learning-based approaches
• Place ML models on 4 GPUs within only 1.2 seconds

• Place well: only up to 6.2% higher step time than expert’s placements

6* Conditions apply
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• Earliest Task First (ETF) [6]
• Schedule an operator with earliest schedulable time 

on its corresponding device first
• Infinite memory assumed
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Algorithm 1: m-ETF
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[6] Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor 
      Communication Times. SIAM Journal on Computing, 18(2)
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𝑜𝑝2
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• Earliest Task First (ETF) [6]
• Schedule an operator with earliest schedulable time 

on its corresponding device first
• Infinite memory assumed

• Our modified version: m-ETF
• What if device memory limit is 5?
• Exclude devices with insufficient memory

from placement
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[6] Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor 
      Communication Times. SIAM Journal on Computing, 18(2)
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Algorithm 2: m-SCT

• Small Communication Time (SCT) [7]
• Find operator’s favorite child that is 

scheduled on the same device via ILP
𝑜𝑝2: 𝑜𝑝3’s favorite child

* Conditions apply 9
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[7] Hanen and Munier. An Approximation Algorithm for Scheduling Dependent  
      Tasks on m Processors with Small Communication Delays. ETFA ‘95



Algorithm 2: m-SCT

• Small Communication Time (SCT) [7]
• Find operator’s favorite child that is 

scheduled on the same device via ILP

• Our modified version: m-SCT
• Determine favorite child via relaxed ILP
• Each device memory limit is 5

𝑜𝑝2: 𝑜𝑝3’s favorite child

* Conditions apply 10
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[7] Hanen and Munier. An Approximation Algorithm for Scheduling Dependent  
      Tasks on m Processors with Small Communication Delays. ETFA ‘95

Theorem 1. m-SCT’s execution time has a constant 
approximation ratio with respect to the optimal 
execution time*.

Execution time: 11 ⇒ 14

OOM



Do the Algorithms Work for TensorFlow?

• Generated placement results were infeasible
• Performance was awful

• Challenges
1) TensorFlow colocation constraints
2) Excessive communication overheads
3) Massive number of operators
4) Different network architectures: parallel vs. sequential
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Challenges #1: TensorFlow Colocation Constraints

• TensorFlow requires some operators to be 
colocated
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𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow requires some operators to be 
colocated

⇨ Tried post-adjust placement
• Fix colocation-unaware placement to satisfy the 

colocation constraints
• Compute-dominant, memory-dominant, majority

• Inconsistent performance gain
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𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow requires some operators to be 
colocated

⇨ Tried post-adjust placement
• Fix colocation-unaware placement to satisfy the 

colocation constraints
• Compute-dominant, memory-dominant, majority

• Inconsistent performance gain

⇨ Co-adjust placement
• Consider colocations while creating schedule
• 1st operator in a group placed ⇒ 

other ops in the group placed on the same device
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Challenge #2: Communication Blowup

• Splitting an ML model graph
    ⇒ Communication ↑ 
    ⇒ Step time ↑
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Challenge #2: Communication Blowup

• Splitting an ML model graph
    ⇒ Communication ↑ 
    ⇒ Step time ↑

⇨ Operator Co-placement
• Operator’s output is only used by its successor
⇒ Place them together

• Place respectively-matched forward and 
backward operators together
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Challenge #3: Massive Number of Operators

𝐼𝑛𝑝𝑢𝑡
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• Number of operators ↑ ⟹ Placement time ↑

• E.g., 4-layer GNMT
• 22,340 operators ⟹ 7-minute placement time

⇨ Operator Fusion
• Fuse operators that are directly connected and 

in the same co-placement group
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𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

Challenge #3: Massive Number of Operators

𝐼𝑛𝑝𝑢𝑡

𝐺𝑟𝑎𝑑𝐿𝑜𝑠𝑠𝑀𝑎𝑡𝑀𝑢𝑙

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

• Number of operators ↑ ⟹ Placement time ↑

• E.g., 4-layer GNMT
• 22,340 operators ⟹ 7-minute placement time

⇨ Operator Fusion
• Fuse operators that are directly connected and 

in the same co-placement group
• May introduce cycles

• Checking all cycles – Expensive, Not scalable
• Conservative but scalable heuristic

• Minimize step time

𝑊𝑒𝑖𝑔ℎ𝑡 𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

group: weight

Cycle
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Challenge #3: Massive Number of Operators

⇨ Forward-Operator-based Placement
• Place ops by only considering forward ops

• Place backward ops as their corresponding forward 
ops on the same device

• With sufficient memory*

• 4-layer GNMT
• # operators: 22,340 ⟹ 706
• Placement time: 7 minutes ⟹ 1.2 seconds

* each GPU memory ≥ model graph memory requirement 19
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Challenge #4: Different Network Architecture

• m-SCT and m-ETF assume parallel communication

• Environment with a constrained network
• Only sequential communication is supported
• E.g., Indirect GPU-to-GPU communication

⇨ Sequential Communication Support
• Introduce device communication queues
• Support computation-communication overlap
• Cache received data to avoid duplicate transfers

Device 0

Device 1 Device 2
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Baechi WorkFlow

tf.Graph Graph 
Generator

Graph Optimizer
Co-Placement Grouper

Operator Fuser

Execution Simulator
Global Scheduler (m-SCT/m-ETF/m-TOPO)

Device Device Device

Placed
tf.GraphTensorFlow

Runtime
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How Long Does It Take to Generate Placement?

Inception-V3: 
 654×–42.6K× Speedup

GNMT: 
  3392×–206K× Speedup
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• 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication
• No NVLink (Direct GPU-to-GPU communication)



• Expert-designed placement
• Inception V3 [4], GNMT [2]

How Fast Are Placed Models (Step Times)?

m-TOPO:
up to 34% higher than expert

m-ETF
-4.5% to 6.2% speedup

23

[2] Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144
[4] Mirhoseini et al., Hierarchical Planning for Device Placement. ICLR ‘18

m-SCT
-6.2% to 1.9% speedup



What If Memory Is Constrained?

• 30% per GPU memory (2.4 GB)

m-SCT: only up to 13.8% slower than sufficient memory
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• All optimizations applied (m-SCT)

How Much Are Optimization Benefits?

Placement times:
75.6×–229.3× Speedup

Step times:
1.1×–3.0× Speedup

Number of Operators:
96.8%–99.8% Reduction

25



Takeaways

• Current state-of-the-art learning-based ML placement algorithms
• Require very long placement time  (2 hours ∼ 3 days)
• Require re-training the placement model on ML model and environment changes

• Baechi is a fast placement system by using algorithmic approaches
• Placement algorithms for memory-constrained environments

• m-TOPO (Topological Sort), m-ETF (Earlier Task First), m-SCT (Small Communication Time)
• Optimizations

• Co-adjust Placement, Co-placement, Operator Fusion, Sequential Communication Support
• Place fast: 654–206K× faster placement time than learning-based approaches

• Place ML models on 4 GPUs within only 1.2 seconds
• Place well: only up to 6.2% higher step time than expert’s placements
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