Baechi: Fast Device Placement of Machine Learning Graphs

Beomyeol Jeon[†], Linda Cai^{*}, Pallavi Srivastava[°], Jintao Jiang[‡], Xiaolan Ke[†], Yitao Meng[†], Cong Xie[†], Indranil Gupta[†]

SoCC '20

[†]University of Illinois at Urbana-Champaign, ^{*}Princeton University, [•]Microsoft, [‡]UCLA

Increasing Machine Learning (ML) Model Size

Not Enough Memory

• GPUs used in AWS, Google Cloud, and Azure

GPU	P4	M60	K80	P100	T4	V100
Memory	8 GB	8 GB	12 GB	12/16 GB	16 GB	16/32 GB

• Even 32GB GPU insufficient for > 1.3 B parameters [1]

- ML training on *memory-constrained* devices
 - Smartphones, UAVs, drones, etc.

Multi-GPU Training: Model Parallelism

How to *place* ML operators on devices?

Why Does Device Placement Matter?

- ML Training repeats training *steps* of updating parameters
- *Step time*: Elapsed time for a single training step of the placed ML model
- *Bad* placement \Rightarrow Step time \uparrow (communication overhead \uparrow , no parallelism)
- *Slow* placement time ⇒ Entire training time ↑ (placement + training)
- Goal: Place a ML model *fast* (low placement time) and *well* (low step time)

Prior Work

- Expert-designed Approach
 - E.g. Google Neural Machine Translation (GNMT) [2]
 - Require **domain knowledge** and **significant manual efforts**
- Learning-based Approaches
 - Reinforcement learning (RL)
 - E.g., ColocRL [3], HierarchicalRL [4], Placeto [5]
 - Require **very long** time to place ML models (2 hours ~ 3 days)
 - Require **re-training** on different ML models and varying environment

^[2] Wu et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144.

^[3] Mirhoseini et al. Device Placement Optimization with Reinforcement Learning. ICML '17.

^[4] Mirhoseini et al. Hierarchical Planning for Device Placement, ICLR '18.

^[5] Addanki et al. Learning Generalizable Device Placement Algorithms for Distributed Machine Learning. NeurIPS '19.

Baechi

- ML placement system that incorporates *algorithmic* approaches into TensorFlow
- Our contributions
 - Placement algorithms for *memory-constrained* environments
 - Memory-constrained Earliest Task First (*m-ETF*)
 - Memory-constrained Small Communication Time (*m-SCT*)
 - Provably *within* a *constant factor* of the optimal execution time*
 - Memory-constrained Topological Sort (*m-TOPO*) [strawman]
 - Optimizations
 - Co-adjust Placement, Co-placement, Operator Fusion, Sequential Communication Support
- Place quickly: 654–206K× faster placement time than learning-based approaches
 - Place ML models on 4 GPUs within *only* **1.2** seconds
- Place well: only up to 6.2% higher step time than expert's placements

Algorithm 1: m-ETF

- Earliest Task First (ETF) [6]
 - Schedule an operator with *earliest schedulable time* on its corresponding device *first*
 - Infinite memory assumed

Execution time: 13

[6] Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor Communication Times. SIAM Journal on Computing, 18(2)

Algorithm 1: m-ETF

- Earliest Task First (ETF) [6]
 - Schedule an operator with *earliest schedulable time* on its corresponding device *first*
 - Infinite memory assumed
- Our modified version: *m*-ETF
 - What if device memory limit is **5**?
 - *Exclude* devices with *insufficient* memory from placement

Execution time: $13 \Rightarrow 14$

[6] Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor Communication Times. SIAM Journal on Computing, 18(2)

Algorithm 2: m-SCT

- Small Communication Time (SCT) [7]
 - Find operator's *favorite child* that is scheduled on the *same* device via ILP

[7] Hanen and Munier. An Approximation Algorithm for Scheduling Dependent Tasks on m Processors with Small Communication Delays. ETFA '95

* Conditions apply

Algorithm 2: m-SCT

- Small Communication Time (SCT) [7]
 - Find operator's *favorite child* that is scheduled on the *same* device via ILP
- Our modified version: *m*-SCT
 - Determine favorite child via *relaxed ILP*
 - Each device memory limit is 5

Theorem 1. *m*-SCT's execution time has a **constant** approximation ratio with respect to the optimal execution time*.

[7] Hanen and Munier. An Approximation Algorithm for Scheduling Dependent Tasks on m Processors with Small Communication Delays. ETFA '95

* Conditions apply

Do the Algorithms Work for TensorFlow?

- Generated placement results were infeasible
- Performance was awful
- Challenges
 - 1) TensorFlow colocation constraints
 - 2) Excessive communication overheads
 - 3) Massive number of operators
 - 4) Different network architectures: parallel vs. sequential

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow *requires* some operators to be *colocated*

Challenges #1: TensorFlow Colocation Constraints

- TensorFlow *requires* some operators to be *colocated*
- ⇒ Tried *post-adjust placement*
 - Fix *colocation-unaware* placement to satisfy the colocation constraints
 - Compute-dominant, memory-dominant, majority
 - Inconsistent performance gain

Challenges #1: TensorFlow Colocation Constraints

- TensorFlow requires some operators to be colocated
- ⇒ Tried *post-adjust placement*
 - Fix *colocation-unaware* placement to satisfy the colocation constraints
 - Compute-dominant, memory-dominant, majority
 - Inconsistent performance gain
- ⇒ Co-adjust placement
 - Consider colocations while creating schedule
 - 1st operator in a group placed ⇒
 other ops in the group placed on the same device

Challenge #2: Communication Blowup

- Splitting an ML model graph
 - \Rightarrow Communication \uparrow
 - \Rightarrow Step time \uparrow

Challenge #2: Communication Blowup

- Splitting an ML model graph
 - \Rightarrow Communication \uparrow
 - \Rightarrow Step time \uparrow
- ⇒ Operator *Co-placement*
 - Operator's output is *only* used by its successor
 ⇒ Place them *together*
 - Place respectively-matched forward and backward operators *together*

Challenge #3: Massive Number of Operators

- Number of operators $\uparrow \Longrightarrow$ Placement time \uparrow
- E.g., 4-layer GNMT
 - 22,340 operators \Rightarrow 7-minute placement time
- ⇒ Operator Fusion
 - Fuse operators that are *directly connected* and *in the same co-placement group*

Challenge #3: Massive Number of Operators

- Number of operators $\uparrow \Longrightarrow$ Placement time \uparrow
- E.g., 4-layer GNMT
 - 22,340 operators \Rightarrow 7-minute placement time
- ⇒ Operator Fusion
 - Fuse operators that are *directly connected* and *in the same co-placement group*
 - May introduce cycles
 - Checking all cycles Expensive, Not scalable
 - Conservative but scalable heuristic
 - Minimize step time

Challenge #3: Massive Number of Operators

Forward-Operator-based Placement

- Place ops by only considering forward ops
 - Place backward ops as their corresponding forward ops on the same device
- With sufficient memory*
- 4-layer GNMT
 - # operators: 22,340 ⇒ **706**
 - Placement time: 7 minutes ⇒ **1.2 seconds**

Challenge #4: Different Network Architecture

- m-SCT and m-ETF assume *parallel communication*
- Environment with a constrained network
 - Only *sequential communication* is supported
 - E.g., Indirect GPU-to-GPU communication
- ⇒ Sequential Communication Support
 - Introduce device communication queues
 - Support computation-communication overlap
 - *Cache* received data to avoid duplicate transfers

Baechi WorkFlow

How Long Does It Take to Generate Placement?

- 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication
 - No NVLink (Direct GPU-to-GPU communication)

Model	HierarchicalRL [34]	Placeto [2]	Baechi (m-SCT)
Inception-V3	11 hrs 50 mins	1 hr 49 mins	1-10 seconds
NMT (GNMT)	1 day 21 hrs 14 mins	2 days 20 hrs 40 mins	1.2-48 seconds

Inception-V3: 654×–42.6K× Speedup GNMT: **3392×–206K×** Speedup

How Fast Are Placed Models (Step Times)?

Expert-designed placement

• Inception V3 [4], GNMT [2]

							Speedup over			
		Single					Singl	e GPU	Expert (4 GPUs)
Model	Batch Size	GPU	Expert	m-TOPO	m-ETF	m-SCT	m-ETF	m-SCT	m-ETF	m-SCT
In contian V2	32	0.269	0.269	0.286	0.269	0.269	C).00% (1 GF	U Exper)
Inception-V3	64	0.491	0.491	0.521	0.491	0.491	0	0.00% (1 GP	U Exper)
GNMT	128	0.251	0.214	0.265	0.224	0.212	12.1%	18.4%	-4.5%	0.9%
(length: 40)	256	0.474	0.376	0.481	0.354	0.369	33.9%	28.5%	6.2%	1.9%
GNMT	128	0.319	0.259	0.348	0.264	0.267	20.9%	19.5%	-1.9%	-3.0%
(length: 50)	256	0.618	0.484	0.609	0.502	0.516	23.1%	19.8%	-3.6%	-6.2%
-TOPO:	OPO:			m-ETF				m-SCT	-	
p to 34% higher	to 34% higher than expert			-4.5% to 6.2% speedup				-6.	2% to	1.9% s

[2] Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144 [4] Mirhoseini et al., Hierarchical Planning for Device Placement. ICLR '18

What If Memory Is Constrained?

• 30% per GPU memory (2.4 GB)

Model	Single GPU	Expert	m-TOPO	m-ETF	m-SCT
Inception-V3	OOM	ООМ	0.690 (58.6%)	0.312 (13.8%)	0.292 (7.9%)
GNMT	OOM	0.221 (3.2%)	0.272 (2.6%)	0.230 (2.6%)	0.212 (0.0%)

m-SCT: only up to 13.8% slower than sufficient memory

How Much Are Optimization Benefits?

• All optimizations applied (m-SCT)

		Un-Optimiz	zed	Optimized			
Model	Num. Ops	Placement (seconds)	Step (seconds)	Num. Ops	Placement (seconds)	Step (seconds)	
Inception-V3	6884	68.0	0.302	17	0.9	0.269	
GNMT (length: 40)	18050	275.1	0.580	542	1.2	0.212	
GNMT (length: 50)	22340	406.1	0.793	706	2.4	0.267	

Number of Operators: 96.8%–99.8% Reduction

Placement times: 75.6×–229.3× Speedup

Step times: 1.1×–3.0× Speedup

Takeaways

- Current state-of-the-art learning-based ML placement algorithms
 - Require **very long** placement time (2 hours ~ 3 days)
 - Require **re-training** the placement model on ML model and environment changes
- Baechi is a *fast* placement system by using *algorithmic* approaches
 - Placement algorithms for memory-constrained environments
 - *m-TOPO* (Topological Sort), *m-ETF* (Earlier Task First), *m-SCT* (Small Communication Time)
 - Optimizations
 - Co-adjust Placement, Co-placement, Operator Fusion, Sequential Communication Support
 - Place fast: 654–206K× faster placement time than learning-based approaches
 - Place ML models on 4 GPUs within *only* **1.2** seconds
 - Place well: only up to 6.2% higher step time than expert's placements