
Baechi: Fast Device Placement
of Machine Learning Graphs

Beomyeol Jeon†, Linda Cai*, Pallavi Srivastava⋄, Jintao Jiang‡, Xiaolan Ke†,
Yitao Meng†, Cong Xie†, Indranil Gupta†

SoCC ’20

†University of Illinois at Urbana-Champaign, *Princeton University, ⋄Microsoft, ‡UCLA

Increasing Machine Learning (ML) Model Size

GPT
(12)

BERT
(24)

GPT-2
(48)

XLM
(12)

XLNet
(24)

RoBERTa
(24)

MegatronLM
(72)

T-NLG
(78)

GPT-3
(96)

ELMo
(93.6M)

GPT
(110M)

BERT
(340M)

Transformer
(465M)

GPT-2
(1.5B)

MT-DNN
(330M)

XLM
(665M)

XLNet
(340M)

RoBERTa
(355M)

MegatronLM
(8.3B)

T-NLG
(17B)

GPT-3
(175B)

10

100

1000

10000

100000

1000000

0

20

40

60

80

100

120

2017 Nov

2018 Apr

2018 Sep

2019 Feb
2019 Jul

2019 Dec

2020 Apr

2020 Sep

#
Pa

ra
m

et
er

s (
Lo

g
Sc

al
ed

)
M

ill
io

ns

La

ye
rs

1

Not Enough Memory

• GPUs used in AWS, Google Cloud, and Azure

• Even 32GB GPU insufficient for > 1.3 B parameters [1]

• ML training on memory-constrained devices
• Smartphones, UAVs, drones, etc.

[1] https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

GPU P4 M60 K80 P100 T4 V100
Memory 8 GB 8 GB 12 GB 12/16 GB 16 GB 16/32 GB

2

ML Model Graph

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Multi-GPU Training: Model Parallelism

3

How to place ML operators on devices?

Why Does Device Placement Matter?

• ML Training repeats training steps of updating parameters

• Step time: Elapsed time for a single training step of the placed ML model

• Bad placement ⟹ Step time ↑ (communication overhead ↑, no parallelism)
• Slow placement time ⟹ Entire training time ↑ (placement + training)

• Goal: Place a ML model fast (low placement time) and well (low step time)

4

Prior Work

• Expert-designed Approach
• E.g. Google Neural Machine Translation (GNMT) [2]
• Require domain knowledge and significant manual efforts

• Learning-based Approaches
• Reinforcement learning (RL)
• E.g., ColocRL [3], HierarchicalRL [4], Placeto [5]
• Require very long time to place ML models (2 hours ∼ 3 days)
• Require re-training on different ML models and varying environment

5

[2] Wu et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144.
[3] Mirhoseini et al. Device Placement Optimization with Reinforcement Learning. ICML '17.
[4] Mirhoseini et al. Hierarchical Planning for Device Placement, ICLR ’18.
[5] Addanki et al. Learning Generalizable Device Placement Algorithms for Distributed Machine Learning. NeurIPS '19.

Baechi

• ML placement system that incorporates algorithmic approaches into TensorFlow
• Our contributions

• Placement algorithms for memory-constrained environments
• Memory-constrained Earliest Task First (m-ETF)
• Memory-constrained Small Communication Time (m-SCT)

• Provably within a constant factor of the optimal execution time*
• Memory-constrained Topological Sort (m-TOPO) [strawman]

• Optimizations
• Co-adjust Placement, Co-placement, Operator Fusion, Sequential Communication Support

• Place quickly: 654–206K× faster placement time than learning-based approaches
• Place ML models on 4 GPUs within only 1.2 seconds

• Place well: only up to 6.2% higher step time than expert’s placements

6* Conditions apply

𝑜𝑝2
5(2)

• Earliest Task First (ETF) [6]
• Schedule an operator with earliest schedulable time

on its corresponding device first
• Infinite memory assumed

Device 0

𝑜𝑝1
4(5)

𝑜𝑝3
5(2)

𝑜𝑝4
4(1)

2

3

2

Algorithm 1: m-ETF

7

Memory: 7

Memory: 3

Execution time: 13

Device 0

Device 1

Device 1

Device 2

[6] Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor
 Communication Times. SIAM Journal on Computing, 18(2)

𝑜𝑝3 𝑜𝑝4

Device 1

𝑜𝑝1 𝑜𝑝2

𝑜𝑝2
5(2)

• Earliest Task First (ETF) [6]
• Schedule an operator with earliest schedulable time

on its corresponding device first
• Infinite memory assumed

• Our modified version: m-ETF
• What if device memory limit is 5?
• Exclude devices with insufficient memory

from placement

Device 0

𝑜𝑝1
4(5)

𝑜𝑝3
5(2)

𝑜𝑝4
4(1)

2

3

2

Device 1

Algorithm 1: m-ETF

8

Device 0

Device 1

Device 1

Device 2

[6] Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor
 Communication Times. SIAM Journal on Computing, 18(2)

𝑜𝑝3 𝑜𝑝4𝑜𝑝3 𝑜𝑝4 𝑜𝑝2

Device 1

𝑜𝑝1 𝑜𝑝2𝑜𝑝1
Memory: 7 ⇒ 5

Memory: 3 ⇒ 5

Execution time: 13 ⇒ 14

OOM

Algorithm 2: m-SCT

• Small Communication Time (SCT) [7]
• Find operator’s favorite child that is

scheduled on the same device via ILP
𝑜𝑝2: 𝑜𝑝3’s favorite child

* Conditions apply 9

𝑜𝑝2
5(2)

Device 1

𝑜𝑝1
4(5)

𝑜𝑝3
5(2)

𝑜𝑝4
4(1)

2

3

2

Memory: 6

Memory: 4

Execution time: 11

𝑜𝑝3 𝑜𝑝2

Device 0

Device 0Device 1

𝑜𝑝1 𝑜𝑝4Device 1

Device 2

[7] Hanen and Munier. An Approximation Algorithm for Scheduling Dependent
 Tasks on m Processors with Small Communication Delays. ETFA ‘95

Algorithm 2: m-SCT

• Small Communication Time (SCT) [7]
• Find operator’s favorite child that is

scheduled on the same device via ILP

• Our modified version: m-SCT
• Determine favorite child via relaxed ILP
• Each device memory limit is 5

𝑜𝑝2: 𝑜𝑝3’s favorite child

* Conditions apply 10

𝑜𝑝2
5(2)

Device 1

𝑜𝑝1
4(5)

𝑜𝑝3
5(2)

𝑜𝑝4
4(1)

2

3

2

Memory: 6 ⇒ 5

Memory: 4 ⇒ 5

𝑜𝑝3 𝑜𝑝2

Device 0

Device 0Device 1

𝑜𝑝1 𝑜𝑝4

𝑜𝑝3 𝑜𝑝4 𝑜𝑝2

𝑜𝑝1Device 1

Device 2

Device 1

[7] Hanen and Munier. An Approximation Algorithm for Scheduling Dependent
 Tasks on m Processors with Small Communication Delays. ETFA ‘95

Theorem 1. m-SCT’s execution time has a constant
approximation ratio with respect to the optimal
execution time*.

Execution time: 11 ⇒ 14

OOM

Do the Algorithms Work for TensorFlow?

• Generated placement results were infeasible
• Performance was awful

• Challenges
1) TensorFlow colocation constraints
2) Excessive communication overheads
3) Massive number of operators
4) Different network architectures: parallel vs. sequential

11

𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow requires some operators to be
colocated

𝐼𝑛𝑝𝑢𝑡

𝐺𝑟𝑎𝑑𝐿𝑜𝑠𝑠𝑀𝑎𝑡𝑀𝑢𝑙

𝑊𝑒𝑖𝑔ℎ𝑡

group: weightgroup: weight

𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

group: step

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

Device 0

Device 0

Device 0Device 2

Device 1 Device 2

Device 2Device 1 Device 1

12

𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow requires some operators to be
colocated

⇨ Tried post-adjust placement
• Fix colocation-unaware placement to satisfy the

colocation constraints
• Compute-dominant, memory-dominant, majority

• Inconsistent performance gain

𝐼𝑛𝑝𝑢𝑡

𝐺𝑟𝑎𝑑𝐿𝑜𝑠𝑠𝑀𝑎𝑡𝑀𝑢𝑙

𝑊𝑒𝑖𝑔ℎ𝑡

group: weightgroup: weight

𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

group: step

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

Device 0

Device 0

Device 0Device 2

Device 1 Device 2

Device 2Device 1 Device 1 Device 0

Device 1

13

𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow requires some operators to be
colocated

⇨ Tried post-adjust placement
• Fix colocation-unaware placement to satisfy the

colocation constraints
• Compute-dominant, memory-dominant, majority

• Inconsistent performance gain

⇨ Co-adjust placement
• Consider colocations while creating schedule
• 1st operator in a group placed ⇒

other ops in the group placed on the same device

𝐼𝑛𝑝𝑢𝑡

𝐺𝑟𝑎𝑑𝐿𝑜𝑠𝑠𝑀𝑎𝑡𝑀𝑢𝑙

𝑊𝑒𝑖𝑔ℎ𝑡

group: weightgroup: weight

𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

group: step

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

Device 0

Device 0

Device 0Device 2

Device 1 Device 2

Device 2Device 1 Device 1 Device 0

Device 1

14

Challenge #2: Communication Blowup

• Splitting an ML model graph
 ⇒ Communication ↑
 ⇒ Step time ↑

15

𝑆ℎ𝑎𝑝𝑒

𝑅𝑒𝑠ℎ𝑎𝑝𝑒

𝑝𝑒𝑟𝑚

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑜𝑝!" 𝑜𝑝#$%
Device 0

Device 1 Device 2

Device 0 Device 0 Device 0

Expensive computation

Cheap computation

Data Transfers

Challenge #2: Communication Blowup

• Splitting an ML model graph
 ⇒ Communication ↑
 ⇒ Step time ↑

⇨ Operator Co-placement
• Operator’s output is only used by its successor
⇒ Place them together

• Place respectively-matched forward and
backward operators together

16

𝑆ℎ𝑎𝑝𝑒

𝑅𝑒𝑠ℎ𝑎𝑝𝑒

𝑝𝑒𝑟𝑚

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑜𝑝!" 𝑜𝑝#$%
Device 0

Device 1 Device 2

Device 0 Device 0 Device 0

Expensive computation

Cheap computation

Device 0 Device 0

Challenge #3: Massive Number of Operators

𝐼𝑛𝑝𝑢𝑡

𝐺𝑟𝑎𝑑𝐿𝑜𝑠𝑠𝑀𝑎𝑡𝑀𝑢𝑙

𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑𝑊𝑒𝑖𝑔ℎ𝑡

group: weightgroup: weight

𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

group: step

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

• Number of operators ↑ ⟹ Placement time ↑

• E.g., 4-layer GNMT
• 22,340 operators ⟹ 7-minute placement time

⇨ Operator Fusion
• Fuse operators that are directly connected and

in the same co-placement group

17

𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

Challenge #3: Massive Number of Operators

𝐼𝑛𝑝𝑢𝑡

𝐺𝑟𝑎𝑑𝐿𝑜𝑠𝑠𝑀𝑎𝑡𝑀𝑢𝑙

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

• Number of operators ↑ ⟹ Placement time ↑

• E.g., 4-layer GNMT
• 22,340 operators ⟹ 7-minute placement time

⇨ Operator Fusion
• Fuse operators that are directly connected and

in the same co-placement group
• May introduce cycles

• Checking all cycles – Expensive, Not scalable
• Conservative but scalable heuristic

• Minimize step time

𝑊𝑒𝑖𝑔ℎ𝑡 𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑

group: weight

Cycle

18

Challenge #3: Massive Number of Operators

⇨ Forward-Operator-based Placement
• Place ops by only considering forward ops

• Place backward ops as their corresponding forward
ops on the same device

• With sufficient memory*

• 4-layer GNMT
• # operators: 22,340 ⟹ 706
• Placement time: 7 minutes ⟹ 1.2 seconds

* each GPU memory ≥ model graph memory requirement 19

𝐺𝑟𝑎𝑑𝑀𝑎𝑡𝑀𝑢𝑙

𝐴𝑝𝑝𝑙𝑦
𝐺𝑟𝑎𝑑𝑊𝑒𝑖𝑔ℎ𝑡

group: weightgroup: weight

𝑆𝑡𝑒𝑝

𝑈𝑝𝑑𝑎𝑡𝑒
𝑆𝑡𝑒𝑝

group: step

group: step

𝑂𝑢𝑡𝑝𝑢𝑡

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

Challenge #4: Different Network Architecture

• m-SCT and m-ETF assume parallel communication

• Environment with a constrained network
• Only sequential communication is supported
• E.g., Indirect GPU-to-GPU communication

⇨ Sequential Communication Support
• Introduce device communication queues
• Support computation-communication overlap
• Cache received data to avoid duplicate transfers

Device 0

Device 1 Device 2

20

Baechi WorkFlow

tf.Graph Graph
Generator

Graph Optimizer
Co-Placement Grouper

Operator Fuser

Execution Simulator
Global Scheduler (m-SCT/m-ETF/m-TOPO)

Device Device Device

Placed
tf.GraphTensorFlow

Runtime

21

How Long Does It Take to Generate Placement?

Inception-V3:
 654×–42.6K× Speedup

GNMT:
 3392×–206K× Speedup

22

• 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication
• No NVLink (Direct GPU-to-GPU communication)

• Expert-designed placement
• Inception V3 [4], GNMT [2]

How Fast Are Placed Models (Step Times)?

m-TOPO:
up to 34% higher than expert

m-ETF
-4.5% to 6.2% speedup

23

[2] Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144
[4] Mirhoseini et al., Hierarchical Planning for Device Placement. ICLR ‘18

m-SCT
-6.2% to 1.9% speedup

What If Memory Is Constrained?

• 30% per GPU memory (2.4 GB)

m-SCT: only up to 13.8% slower than sufficient memory

24

• All optimizations applied (m-SCT)

How Much Are Optimization Benefits?

Placement times:
75.6×–229.3× Speedup

Step times:
1.1×–3.0× Speedup

Number of Operators:
96.8%–99.8% Reduction

25

Takeaways

• Current state-of-the-art learning-based ML placement algorithms
• Require very long placement time (2 hours ∼ 3 days)
• Require re-training the placement model on ML model and environment changes

• Baechi is a fast placement system by using algorithmic approaches
• Placement algorithms for memory-constrained environments

• m-TOPO (Topological Sort), m-ETF (Earlier Task First), m-SCT (Small Communication Time)
• Optimizations

• Co-adjust Placement, Co-placement, Operator Fusion, Sequential Communication Support
• Place fast: 654–206K× faster placement time than learning-based approaches

• Place ML models on 4 GPUs within only 1.2 seconds
• Place well: only up to 6.2% higher step time than expert’s placements

26

