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Overview of My Research

Auction Design

• Prove that simple auction can achieve 99% of optimal revenue with

constant enhanced competition [EC21]

Joint work with Raghuvansh Saxena

• Implementation in advised strategies: a new solution concept for self

interested behavior when being truthful is NP-hard [ITCS20]

Joint work with Clayton Thomas and Matt Weinberg

• Repeated auction design for buyers using no regret learning

algorithms

Joint work with Matt Weinberg, Evan Wildenhain and Shirley Zhang

Stable Matching

• A simple proof for short-side advantage in random matching markets

[SOSA21]

Joint work with Clayton Thomas and Matt Weinberg 1
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Outline

Goal: design truthful auction that gets as much revenue as possible

• Maximizing revenue is easy when there is one item

• Maximizing revenue is hard when there are multiple items

• Enhanced competition: can a simple auction achieve the optimal

revenue by recruiting more bidders

• Our result: simple auction can achieve 99% of the optimal revenue

with constant enhanced competition
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Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

• Each bidder i has valuation function vi : 2
m → R+.

• Bidders participate in some (possibly interactive) protocol.

• Auctioneer awards the set of items Si to bidder i , charges price pi .

Bidder Goal: Maximizes (expected) utility = vi (Si )− pi

Auctioneer Goal: Maximizes (expected) revenue =
∑

i pi .

Bidder goal different from auctioneer goal, how can the auctioneer

predict bidder behavior?

Truthful Auction (Informal)

An auction is truthful if it is in the bidder’s best interest to behave

truthfully (e.g. bidding their own value)

Auctioneer Constraint: Use truthful auctions
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Revenue Maximizing Auction: Our Setting

vi ∼ D = ×jDj

...

...

v( ) = 5

v( ) = 6

v( , ) = 11

n i.i.d additive bidders, m items
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Bayesian Incentive Compatible: the bidder’s expected

utility is maximized by behaving truthfully when other

bidders also behave truthfully
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Maximizing Revenue: Single Item Setting

One item, one bidder:

Myerson

The optimal auction is a posted price auction.

Example: v ∼ U[0, 1]

Revenue from selling item at price p: p · Pr[value ≥ p] = p(1− p)

Optimal auction: sell item at price p = 1/2
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Maximizing Revenue: Single Item Setting

One item, multiple bidders:

Let F be the c.d.f of D, let f be the p.d.f of D

(each bidder i ’s value vi ∼ D)

Myerson

The optimal auction maximizes the expected Myerson virtual value

φ(vi ) = vi − 1−F (vi )
f (vi )

of the bidder that gets the item.

When the virtual value function is regular, the optimal auction is second

price auction with reserve.
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Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

v1 = 1 w.p. 1/2 and v1 = 2 w.p. 1/2

v2 = 1 w.p. 3/4 and v2 = 4 w.p. 1/4

Optimal deterministic auction: selling separately Revenue: 2

Menu (p1, p2): get item 1 w.p. p1, get item 2 w.p. p2

Randomize auction: (1, ϵ) with price 2+ ϵ

preferred by v1 = 2, v2 = 1

(ϵ, 1) with price 4+ ϵ

preferred by v1 = 1, v2 = 4

(1, 1) with price 6− 3ϵ

preferred by v1 = 2, v2 = 4

Revenue: 1
2 · 3

4 (2 + ϵ) + 1
2 · 1

4 (4 + ϵ) + 1
2 · 1

4 (6− 3ϵ) = 2 + ϵ
8

7
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Maximizing Revenue: Multiple Item Setting

Revenue optimal auctions are messy when m > 1:

• (Non-monotonicity) It might get less revenue from bidders with

higher values. [HR15]

• (Randomness) It might sell “lottery tickets” for sets of items.

[Tha04, MV07, Pav11, DDT17]

• (Intractability) It might present uncountably infinite number of

“lottery tickets”. [HN13, DDT14]
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Approximating Revenue Is Possible But With Unsatisfactory

Constants

Paper n m Bidder Type Approximation Ratio

[BILW14] n = 1 arbitrary additive 6

[CDW16] arbitrary arbitrary additive 8

[GK16] arbitrary arbitrary

additive,

regular

200 (prior-

independent auction)

[CZ17] arbitrary arbitrary XOS 268

[CZ17] arbitrary arbitrary subadditive logm

· · ·

9



Enhanced Competition

Can we get (1− ϵ) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders n′ > n where a simple auction with n′ bidders

(almost) match the revenue of the optimal auction with n bidders.

• Motivation: Instead of spending effort designing the optimal (or

close to optimal) auction, spend effort recruiting bidders!

• Focus of our paper: constant enhanced competition – Is it

possible to use only n′ = O(n) bidders?

10



Enhanced Competition

Can we get (1− ϵ) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders n′ > n where a simple auction with n′ bidders

(almost) match the revenue of the optimal auction with n bidders.

• Motivation: Instead of spending effort designing the optimal (or

close to optimal) auction, spend effort recruiting bidders!

• Focus of our paper: constant enhanced competition – Is it

possible to use only n′ = O(n) bidders?

10



Enhanced Competition

Can we get (1− ϵ) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders n′ > n where a simple auction with n′ bidders

(almost) match the revenue of the optimal auction with n bidders.

• Motivation: Instead of spending effort designing the optimal (or

close to optimal) auction, spend effort recruiting bidders!

• Focus of our paper: constant enhanced competition – Is it

possible to use only n′ = O(n) bidders?

10



Enhanced Competition

Can we get (1− ϵ) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders n′ > n where a simple auction with n′ bidders

(almost) match the revenue of the optimal auction with n bidders.

• Motivation: Instead of spending effort designing the optimal (or

close to optimal) auction, spend effort recruiting bidders!

• Focus of our paper: constant enhanced competition – Is it

possible to use only n′ = O(n) bidders?

10



Enhanced Competition

Can we get (1− ϵ) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders n′ > n where a simple auction with n′ bidders

(almost) match the revenue of the optimal auction with n bidders.

• Motivation: Instead of spending effort designing the optimal (or

close to optimal) auction, spend effort recruiting bidders!

• Focus of our paper: constant enhanced competition – Is it

possible to use only n′ = O(n) bidders?

10



Progress on Constant Enhanced Competition

m

n

[BK96]: m = 1

[FFR18, BW19]: n = 1 or

n ≫ m

n ≪ m: O(n log(mn ))

Our result: for all n, m

For which n, m is constant enhanced competition enough to get almost

full revenue?
11
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Our Results

Theorem 1 (informal)

A simple auction with n′ = O(n/ϵ) bidders can obtain a (1− ϵ) fraction

of the optimal revenue with n bidders.

12



Our Results

Theorem 1

Let ϵ > 0 and n′ = O(n/ϵ). At least one of the following hold:

1. A (1− ϵ)-fraction of the optimal revenue with n bidders is obtained

by a second price auction with n′ bidders.

2. A simple auction (either selling the items separately or a second

price auction with an entry fee) with n′ bidders generates more

revenue than the optimal auction with n bidders.

Note: for any auction (or best of a group of auctions) to get near

optimal revenue with constant enhance competition, it is necessary for

the auction to guarantee a constant fraction of the optimal revenue. Our

result can be viewed as saying this is sufficient as well.
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Our Results for Regular Distributions

We will propose a prior independent auction that generates almost

optimal revenue with constant enhanced competition.

Theorem 2

Let ϵ > 0 and n′ = O(n/ϵ2). When the items are regular, at least one of

the following hold:

1. A (1− ϵ)-fraction of the optimal revenue with n bidders is obtained

by a second price auction with n′ bidders.

2. A prior-independent second price auction with an entry fee with n′

bidders generates 1
ϵ times more revenue than the optimal auction

with n bidders.
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Our Results for Regular Distributions

Theorem 2

Let ϵ > 0 and n′ = O(n/ϵ2). When the items are regular, at least one of

the following hold:

1. A (1− ϵ)-fraction of the optimal revenue with n bidders is obtained

by a second price auction with n′ bidders.

2. A prior-independent second price auction with an entry fee and n′

bidders generates 1
ϵ times more revenue than the optimal auction

with n bidders.

Hybrid Auction:

• runs second price auction w.p. 1− ϵ

• runs prior-independent second price auction with an entry fee w.p. ϵ
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Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with n′ = 20n
ϵ bidders extract at

most (1− ϵ) fraction of optimal revenue with n bidders),

then (welfare with n′ = 20n
ϵ bidders) ≥ 20· (welfare with n bidders).

n′ = 20n/ϵ bidders

First n bidders 1 item case

E[welfare with n]

≤ ϵ

20
· E[welfare with n′] + (1− ϵ

20
) · E[2nd highest value with n′]

≤ ϵ

20
· E[welfare with n′] + (1− ϵ)E[welfare with n]

⇒ϵ · E[welfare with n] ≤ ϵ

20
· E[welfare with n′]
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Theorem 1 Proof Outline

Theorem 1

Let ϵ > 0 and n′ = O(n/ϵ). At least one of the following hold:

1. A (1− ϵ)-fraction of the optimal revenue with n bidders is obtained

by a second price auction with n′ bidders.

2. A simple auction with n′ bidders generates more revenue than the

optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove

• Step one: The optimal welfare with n′ bidders is much larger than

the optimal welfare with n bidders.

• Step two: The optimal virtual welfare with n′ bidders is much

larger than the optimal virtual welfare with n bidders.

• Step three: Use connection between optimal revenue and virtual

welfare.
18



Connection Between Optimal Revenue And Virtual Welfare

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the

expected virtual welfare, which is at most 8 times revenue from a simple

auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with n′ = 20n
ϵ bidders extract at

most (1− ϵ) fraction of optimal revenue with n bidders),

then (virtual welfare with n′ = 20n
ϵ bidders) ≥ 20· (virtual welfare with n

bidders).

Proof of Theorem 1

revenue from n bidders ≤ virtual welfare from n bidders

≤ 1

20
· virtual welfare from n′ bidders

≤ 8

20
· revenue from a simple auction with n′ bidders
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Assuming event A, we prove:
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Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with n′ = 20n
ϵ bidders extract at

most (1− ϵ) fraction of optimal revenue with n bidders), then

(virtual welfare with n′ = 20n
ϵ bidders) ≥ 20· (virtual welfare with n

bidders).

Virtual value from [CDW16]:

Φn
j (vi , v−i ) = vi,j · 1

(
vi ̸∈ R

v−i

j

)
+ φ̃j(vi,j)

+ · 1
(
vi ∈ R

v−i

j

)
.

Conditions:

• The virtual values must be at most the corresponding values.

• The distribution of virtual values for different bidders are

independent and identical.

• The distribution of virtual values does not depend on the number n

of bidders participating in the auction.
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Redefining Virtual Value

Idea: take the expectation (draw n − 1 ghost bidders)

A modified virtual value:

Φn
j (vi ) =

vi,j · E
v−i∼Dn−1

[
1

(
vi ̸∈ R

v−i

j

)]
+φ̃j(vi,j)

+· E
v−i∼Dn−1

[
1

(
vi ∈ R

v−i

j

)]

.

Conditions:

• The virtual values must be at most the corresponding values.

• The distribution of virtual values for different bidders are

independent and identical.

• The distribution of virtual values does not depend on the number n

of bidders participating in the auction.
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Redefining Virtual Value

Idea: fix some large n′ > n, draw n′ − 1 bidder values w−i ∼ Dn′−1

A modified virtual value:

Φn
j (vi ) = vi,j · E

w−i∼Dn′−1
1

(
wi ̸∈ R

w−i

j

)
+φ̃j(vi,j)

+· E
w−i∼Dn′−1

1

(
wi ∈ R

w−i

j

)
.

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the

expected virtual welfare, which is at most 8 times revenue from a simple

auction (selling separately or second price with entry fee).
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independent and identical.

• The distribution of virtual values does not depend on the number n

of bidders participating in the auction.

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the

expected virtual welfare, which is at most 8 times revenue from a simple

auction (selling separately or second price with entry fee).
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Theorem 1 Proof Outline

Theorem 1

Let ϵ > 0 and n′ = O(n/ϵ). At least one of the following hold:

1. A (1− ϵ)-fraction of the optimal revenue with n bidders is obtained

by a second price auction with n′ bidders.

2. A simple auction with n′ bidders generates more revenue than the

optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove

• Step one: The optimal welfare with n′ bidders is much larger than

the optimal welfare with n bidders.

• Step two: The optimal virtual welfare with n′ bidders is much

larger than the optimal virtual welfare with n bidders.

• Step three: Use connection between optimal revenue and virtual

welfare.
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Conclusion

We show that, for all m and n, an arbitrarily large constant fraction of

the optimal revenue from selling m items to n bidders can be obtained

via simple auctions with O(n) bidders.

Future directions:

• Obtains full optimal revenue with O(n) bidders?

• Obtain almost optimal revenue with n + o(n) bidders or prove a

lower bound?

• Our work can also be viewed as proving for additive valuations an

equivalence between auctions that gets a constant fraction of the

optimal revenue and auctions that has O(n) enhanced competition.

Can we prove this for more general class of valuation functions?
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Thank you!

Questions?
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