Achieving Optimal Revenue with Enhanced Competition

Linda Cai

General Exam at Princeton University
Overview of My Research

Auction Design

• Prove that simple auction can achieve 99% of optimal revenue with constant enhanced competition [EC21]

 Joint work with Raghuvansh Saxena

• Implementation in advised strategies: a new solution concept for self interested behavior when being truthful is NP-hard [ITCS20]

 Joint work with Clayton Thomas and Matt Weinberg

• Repeated auction design for buyers using no regret learning algorithms

 Joint work with Matt Weinberg, Evan Wildenhain and Shirley Zhang

Stable Matching

• A simple proof for short-side advantage in random matching markets [SOSA21]

 Joint work with Clayton Thomas and Matt Weinberg
Overview of My Research

Auction Design

- **99% Revenue with Constant Enhanced Competition [EC21]**

 Joint work with Raghuvansh Saxena

- Implementation in advised strategies: a new solution concept for self interested behavior when being truthful is NP-hard [ITCS20]

 Joint work with Clayton Thomas and Matt Weinberg

- Repeated auction design for buyers using no regret learning algorithms

 Joint work with Matt Weinberg, Evan Wildenhain and Shirley Zhang

Stable Matching

- A simple proof for short-side advantage in random matching markets [SOSA21]

 Joint work with Clayton Thomas and Matt Weinberg
Goal: design truthful auction that gets as much revenue as possible
Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item
Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is **one** item
- Maximizing revenue is hard when there are **multiple** items
Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item
- Maximizing revenue is hard when there are multiple items
- Enhanced competition: can a simple auction achieve the optimal revenue by recruiting more bidders
Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item
- Maximizing revenue is hard when there are multiple items
- Enhanced competition: can a simple auction achieve the optimal revenue by recruiting more bidders
- Our result: simple auction can achieve 99% of the optimal revenue with constant enhanced competition
Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_i : 2^m \to \mathbb{R}^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_i to bidder i, charges price p_i.

Bidder Goal: Maximizes (expected) utility = $v_i(S_i) - p_i$.

Auctioneer Goal: Maximizes (expected) revenue = $\sum_i p_i$.

Bidder goal different from auctioneer goal, how can the auctioneer predict bidder behavior?

Truthful Auction (Informal)

An auction is **truthful** if it is in the bidder's best interest to behave truthfully (e.g. bidding their own value).

Auctioneer Constraint: Use truthful auctions.
Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_i : 2^m \rightarrow R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_i to bidder i, charges price p_i.

Bidder Goal: Maximizes (expected) utility $=$ $v_i(S_i) − p_i$
Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_i : 2^m \rightarrow R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_i to bidder i, charges price p_i.

Bidder Goal: Maximizes (expected) utility $= v_i(S_i) - p_i$

Auctioneer Goal: Maximizes (expected) revenue $= \sum p_i$.

Bidder goal different from auctioneer goal, how can the auctioneer predict bidder behavior?

Truthful Auction (Informal)

An auction is **truthful** if it is in the bidder’s best interest to behave truthfully (e.g. bidding their own value).

Auctioneer Constraint: Use truthful auctions.
Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_i : 2^m \rightarrow R^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_i to bidder i, charges price p_i.

Bidder Goal: Maximizes (expected) utility $= v_i(S_i) - p_i$

Auctioneer Goal: Maximizes (expected) revenue $= \sum_i p_i$.

Bidder goal different from auctioneer goal, how can the auctioneer predict bidder behavior?
Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_i : 2^m \rightarrow \mathbb{R}^+$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_i to bidder i, charges price p_i.

Bidder Goal: Maximizes (expected) utility $= v_i(S_i) - p_i$

Auctioneer Goal: Maximizes (expected) revenue $= \sum_i p_i$.

Bidder goal different from auctioneer goal, how can the auctioneer predict bidder behavior?

Truthful Auction (Informal)
An auction is *truthful* if it is in the bidder’s best interest to behave truthfully (e.g. bidding their own value)

Auctioneer Constraint: Use truthful auctions
Revenue Maximizing Auction: Our Setting

\[v_i \approx D_j = \times D_j \]

...\[v_i(\cdot) = 5 \]
\[v_i(\cdot) = 6 \]
\[v_i(\cdot, \cdot) = 11 \]

\(n \) i.i.d additive bidders, \(m \) items
Revenue Maximizing Auction: Our Setting

\(v_i \sim \mathcal{D} = \times_j \mathcal{D}_j \)

\(n \) i.i.d. additive bidders, \(m \) items
Revenue Maximizing Auction: Our Setting

\[v_i \sim D = \times_j D_j \]

\[v(\text{apple}) = 5 \]

\[v(\text{banana}) = 6 \]

\[v(\text{apple, banana}) = 11 \]

\[n \text{ i.i.d additive bidders, } m \text{ items} \]
Revenue Maximizing Auction: Our Setting

\[v_i \sim D = \times_j D_j \]

\[v(-0x0) = 5 \]

\[v(-0x0, -0x0) = 11 \]

\[n \text{ i.i.d additive bidders, } m \text{ items} \]
Revenue Maximizing Auction: Our Setting

\[\nu_i \sim \mathcal{D} = x_j \mathcal{D}_j \]

\[\nu(\text{apple}) = 5 \]

\[\nu(\text{banana}) = 6 \]

\[\nu(\text{apple}, \text{banana}) = 11 \]

\[n \text{ i.i.d additive bidders, } m \text{ items} \]
Revenue Maximizing Auction: Our Setting

\(v_i \sim D = \times_j D_j \)

We want to maximize revenue using truthful auctions.

\(v(\text{apple}) = 5 \)
\(v(\text{banana}) = 6 \)

\(n \) i.i.d additive bidders, \(m \) items
Revenue Maximizing Auction: Our Setting

$v_i \sim D = \times_j D_j$

$v(\text{apple}) = 5$

$v(\text{banana}) = 6$

We want to maximize revenue using **truthful** auctions.

Bayesian Incentive Compatible: the bidder’s expected utility is maximized by behaving truthfully when other bidders also behave truthfully.
Maximizing Revenue: Single Item Setting

One item, one bidder:

Myerson

The optimal auction is a posted price auction.

Example: \(v \in U[0,1] \)

Revenue from selling item at price \(p \):

\[p \cdot \Pr[\text{value} \geq p] = p(1-p) \]

Optimal auction: sell item at price \(p = 1/2 \)
One item, one bidder:

Myerson

The optimal auction is a posted price auction.
Maximizing Revenue: Single Item Setting

One item, one bidder:

Myerson
The optimal auction is a posted price auction.

Example: $v \sim U[0, 1]$
Maximizing Revenue: Single Item Setting

One item, one bidder:

Myerson

The optimal auction is a posted price auction.

Example: \(v \sim U[0, 1] \)

Revenue from selling item at price \(p \): \(p \cdot \Pr[\text{value } \geq p] = p(1 - p) \)
Maximizing Revenue: Single Item Setting

One item, one bidder:

Myerson
The optimal auction is a posted price auction.

Example: $v \sim U[0, 1]$

Revenue from selling item at price p: $p \cdot \Pr[\text{value } \geq p] = p(1 - p)$

Optimal auction: sell item at price $p = 1/2$
Maximizing Revenue: Single Item Setting

One item, *multiple* bidders:

\[
\text{Let } F \text{ be the c.d.f of } D, \text{ let } f \text{ be the p.d.f of } D \quad (\text{each bidder } i \text{'s value } v_i \sim D) \\
\text{Myerson The optimal auction maximizes the expected Myerson virtual value } \phi(v_i) = v_i - 1 - F(v_i) f(v_i) \text{ of the bidder that gets the item.} \\
\text{When the virtual value function is regular, the optimal auction is second price auction with reserve.}
\]
Maximizing Revenue: Single Item Setting

One item, multiple bidders:

Let F be the c.d.f of D, let f be the p.d.f of D

(each bidder i’s value $v_i \sim D$)

Myerson

The optimal auction maximizes the expected **Myerson virtual value**

$$
\varphi(v_i) = v_i - \frac{1-F(v_i)}{f(v_i)}
$$

of the bidder that gets the item.
Maximizing Revenue: Single Item Setting

One item, multiple bidders:

Let F be the c.d.f of D, let f be the p.d.f of D

(each bidder i’s value $v_i \sim D$)

Myerson

The optimal auction maximizes the expected Myerson virtual value

$$\varphi(v_i) = v_i - \frac{1-F(v_i)}{f(v_i)}$$

of the bidder that gets the item.

When the virtual value function is *regular*, the optimal auction is *second price auction* with reserve.
Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } 1/2 \text{ and } v_1 = 2 \text{ w.p. } 1/2 \]

\[v_2 = 1 \text{ w.p. } 3/4 \text{ and } v_2 = 4 \text{ w.p. } 1/4 \]
Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } \frac{1}{2} \text{ and } v_1 = 2 \text{ w.p. } \frac{1}{2} \]
\[v_2 = 1 \text{ w.p. } \frac{3}{4} \text{ and } v_2 = 4 \text{ w.p. } \frac{1}{4} \]

Optimal deterministic auction: selling separately

Revenue: 2
Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } \frac{1}{2} \text{ and } v_1 = 2 \text{ w.p. } \frac{1}{2} \]

\[v_2 = 1 \text{ w.p. } \frac{3}{4} \text{ and } v_2 = 4 \text{ w.p. } \frac{1}{4} \]

Optimal deterministic auction: selling separately

Revenue: 2

Menu \((p_1, p_2)\): get item 1 w.p. \(p_1\), get item 2 w.p. \(p_2\)
Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } 1/2 \text{ and } v_1 = 2 \text{ w.p. } 1/2 \]

\[v_2 = 1 \text{ w.p. } 3/4 \text{ and } v_2 = 4 \text{ w.p. } 1/4 \]

Optimal deterministic auction: selling separately

Revenue: 2

Menu \((p_1, p_2)\): get item 1 w.p. \(p_1\), get item 2 w.p. \(p_2\)

Randomize auction: \((1, \epsilon)\) with price \(2 + \epsilon\)

\((\epsilon, 1)\) with price \(4 + \epsilon\)

\((1, 1)\) with price \(6 - 3\epsilon\)
Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } \frac{1}{2} \text{ and } v_1 = 2 \text{ w.p. } \frac{1}{2} \]

\[v_2 = 1 \text{ w.p. } \frac{3}{4} \text{ and } v_2 = 4 \text{ w.p. } \frac{1}{4} \]

Optimal deterministic auction: selling separately

Revenue: 2

Menu \((p_1, p_2)\): get item 1 w.p. \(p_1\), get item 2 w.p. \(p_2\)

Randomize auction: \((1, \epsilon)\) with price \(2 + \epsilon\) preferred by \(v_1 = 2, v_2 = 1\)

\((\epsilon, 1)\) with price \(4 + \epsilon\)

\((1, 1)\) with price \(6 - 3\epsilon\)
Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } 1/2 \text{ and } v_1 = 2 \text{ w.p. } 1/2 \]

\[v_2 = 1 \text{ w.p. } 3/4 \text{ and } v_2 = 4 \text{ w.p. } 1/4 \]

Optimal deterministic auction: selling separately

Revenue: 2

Menu \((p_1, p_2)\): get item 1 w.p. \(p_1\), get item 2 w.p. \(p_2\)

Randomize auction: \((1, \epsilon)\) with price \(2 + \epsilon\) preferred by \(v_1 = 2, v_2 = 1\)

\((\epsilon, 1)\) with price \(4 + \epsilon\) preferred by \(v_1 = 1, v_2 = 4\)

\((1, 1)\) with price \(6 - 3\epsilon\)
Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } 1/2 \text{ and } v_1 = 2 \text{ w.p. } 1/2 \]

\[v_2 = 1 \text{ w.p. } 3/4 \text{ and } v_2 = 4 \text{ w.p. } 1/4 \]

Optimal deterministic auction: selling separately

Revenue: 2

Menu \((p_1, p_2)\): get item 1 w.p. \(p_1\), get item 2 w.p. \(p_2\)

Randomize auction: \((1, \epsilon)\) with price \(2 + \epsilon\) preferred by \(v_1 = 2, v_2 = 1\)

\((\epsilon, 1)\) with price \(4 + \epsilon\) preferred by \(v_1 = 1, v_2 = 4\)

\((1, 1)\) with price \(6 - 3\epsilon\) preferred by \(v_1 = 2, v_2 = 4\)
Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

\[v_1 = 1 \text{ w.p. } 1/2 \text{ and } v_1 = 2 \text{ w.p. } 1/2 \]

\[v_2 = 1 \text{ w.p. } 3/4 \text{ and } v_2 = 4 \text{ w.p. } 1/4 \]

Optimal deterministic auction: selling separately

Revenue: 2

Menu \((p_1, p_2)\): get item 1 w.p. \(p_1\), get item 2 w.p. \(p_2\)

Randomize auction: (1, \(\epsilon\)) with price \(2 + \epsilon\) preferred by \(v_1 = 2, v_2 = 1\)

\((\epsilon, 1)\) with price \(4 + \epsilon\) preferred by \(v_1 = 1, v_2 = 4\)

\((1, 1)\) with price \(6 - 3\epsilon\) preferred by \(v_1 = 2, v_2 = 4\)

Revenue:

\[
\frac{1}{2} \cdot \frac{3}{4} (2 + \epsilon) + \frac{1}{2} \cdot \frac{1}{4} (4 + \epsilon) + \frac{1}{2} \cdot \frac{1}{4} (6 - 3\epsilon) = 2 + \frac{\epsilon}{8}
\]
Revenue optimal auctions are messy when $m > 1$:

- **(Non-monotonicity)** It might get less revenue from bidders with higher values. [HR15]

- **(Randomness)** It might sell “lottery tickets” for sets of items. [Tha04, MV07, Pav11, DDT17]

- **(Intractability)** It might present uncountably infinite number of “lottery tickets”. [HN13, DDT14]
Approximating Revenue Is Possible But With Unsatisfactory Constants

<table>
<thead>
<tr>
<th>Paper</th>
<th>n</th>
<th>m</th>
<th>Bidder Type</th>
<th>Approximation Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BILW14]</td>
<td>$n = 1$</td>
<td>arbitrary</td>
<td>additive</td>
<td>6</td>
</tr>
<tr>
<td>[CDW16]</td>
<td>arbitrary</td>
<td>arbitrary</td>
<td>additive</td>
<td>8</td>
</tr>
<tr>
<td>[GK16]</td>
<td>arbitrary</td>
<td>arbitrary</td>
<td>additive, regular</td>
<td>200 (prior-independent auction)</td>
</tr>
<tr>
<td>[CZ17]</td>
<td>arbitrary</td>
<td>arbitrary</td>
<td>XOS</td>
<td>268</td>
</tr>
<tr>
<td>[CZ17]</td>
<td>arbitrary</td>
<td>arbitrary</td>
<td>subadditive</td>
<td>$\log m$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can we get \((1 - \epsilon)\) fraction of the revenue with a simple auction?
Can we get \((1 - \epsilon)\) fraction of the revenue with a simple auction?

Yes! With enhanced competition!
Can we get \((1 - \epsilon)\) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders \(n' > n\) where a simple auction with \(n'\) bidders (almost) match the revenue of the optimal auction with \(n\) bidders.
Can we get \((1 - \epsilon)\) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders \(n' > n\) where a simple auction with \(n'\) bidders (almost) match the revenue of the optimal auction with \(n\) bidders.

- **Motivation:** Instead of spending effort designing the optimal (or close to optimal) auction, spend effort recruiting bidders!
Can we get \((1 - \epsilon)\) fraction of the revenue with a simple auction?

Yes! With enhanced competition!

Enhanced Competition

Find number of bidders \(n' > n\) where a simple auction with \(n'\) bidders (almost) match the revenue of the optimal auction with \(n\) bidders.

- **Motivation:** Instead of spending effort designing the optimal (or close to optimal) auction, spend effort recruiting bidders!

- **Focus of our paper:** constant enhanced competition – Is it possible to use only \(n' = O(n)\) bidders?
Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?
For which n, m is constant enhanced competition enough to get almost full revenue?

\[[BK96]: \ m = 1 \]
Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

[FFR18, BW19]: $n = 1$ or $n \gg m$

[BK96]: $m = 1$
Progress on Constant Enhanced Competition

For which \(n, m \) is constant enhanced competition enough to get almost full revenue?

- **[BK96]:** \(m = 1 \)
- **[FFR18, BW19]:** \(n = 1 \) or \(n \gg m \)
- \(n \ll m: O(n \log(\frac{m}{n})) \)
Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

$\frac{n}{m} \ll n \approx m: O\left(n \log\left(\frac{m}{n}\right)\right)$

Our result: for all n, m

- $[FFR18, BW19]: n = 1$ or $n \gg m$
- $[BK96]: m = 1$
Theorem 1 (informal)
A simple auction with $n' = O(n/\epsilon)$ bidders can obtain a $(1 - \epsilon)$ fraction of the optimal revenue with n bidders.
Our Results

Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.

2. A simple auction (either selling the items separately or a second price auction with an entry fee) with n' bidders generates more revenue than the optimal auction with n bidders.
Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.

2. A simple auction (either selling the items separately or a second price auction with an entry fee) with n' bidders generates c times more revenue than the optimal auction with n bidders.
Theorem 1

Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.

2. Any auction that guarantees a constant approximation to the optimal revenue with n' bidders generates c times more revenue than the optimal auction with n bidders.
Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.

2. Any auction that guarantees a constant approximation to the optimal revenue with n' bidders generates c times more revenue than the optimal auction with n bidders.

Note: for any auction (or best of a group of auctions) to get near optimal revenue with constant enhance competition, it is necessary for the auction to guarantee a constant fraction of the optimal revenue. Our result can be viewed as saying this is sufficient as well.
Our Results for Regular Distributions

We will propose a prior independent auction that generates almost optimal revenue with constant enhanced competition.
Our Results for Regular Distributions

We will propose a **prior independent auction** that generates almost optimal revenue with constant enhanced competition.

Theorem 2

Let $\epsilon > 0$ and $n' = O(n/\epsilon^2)$. When the items are regular, at least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.

2. A prior-independent second price auction with an entry fee with n' bidders generates $\frac{1}{\epsilon}$ times more revenue than the optimal auction with n bidders.
Our Results for Regular Distributions

Theorem 2

Let $\epsilon > 0$ and $n' = O(n/\epsilon^2)$. When the items are regular, at least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A prior-independent second price auction with an entry fee and n' bidders generates $\frac{1}{\epsilon}$ times more revenue than the optimal auction with n bidders.

Hybrid Auction:

- runs second price auction w.p. $1 - \epsilon$
- runs prior-independent second price auction with an entry fee w.p. ϵ
Our Results for Regular Distributions

Theorem 2

Let $\epsilon > 0$ and $n' = O(n/\epsilon^2)$. When the items are regular, at least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A prior-independent second price auction with an entry fee and n' bidders generates $\frac{1}{\epsilon}$ times more revenue than the optimal auction with n bidders.

Hybrid Auction:

- runs second price auction w.p. $1 - \epsilon$
- runs prior-independent second price auction with an entry fee w.p. ϵ

The hybrid auction with $n' = O(n/\epsilon^2)$ bidders obtains $(1 - \epsilon)^2$-fraction of the optimal revenue with n bidders.
Theorem 1

Let \(\epsilon > 0 \) and \(n' = O(n/\epsilon) \). At least one of the following hold:

1. A \((1 - \epsilon)\)-fraction of the optimal revenue with \(n \) bidders is obtained by a second price auction with \(n' \) bidders.

2. A simple auction with \(n' \) bidders generates more revenue than the optimal revenue with \(n \) bidders.
Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A simple auction with n' bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove:
Theorem 1

Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.

2. A simple auction with n' bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove:

• **Step one:** The optimal welfare with n' bidders is much larger than the optimal welfare with n bidders.
Theorem 1

Let \(\epsilon > 0 \) and \(n' = O(n/\epsilon) \). At least one of the following hold:

1. A \((1 - \epsilon)\)-fraction of the optimal revenue with \(n \) bidders is obtained by a second price auction with \(n' \) bidders.
2. A simple auction with \(n' \) bidders generates more revenue than the optimal revenue with \(n \) bidders.

Event A: case (1) does not hold

Assuming event A, we prove:

- **Step one:** The optimal welfare with \(n' \) bidders is much larger than the optimal welfare with \(n \) bidders.
- **Step two:** The optimal virtual welfare with \(n' \) bidders is much larger than the optimal virtual welfare with \(n \) bidders.
Theorem 1 Proof Outline

Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A simple auction with n' bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove:

- **Step one:** The optimal welfare with n' bidders is much larger than the optimal welfare with n bidders.
- **Step two:** The optimal virtual welfare with n' bidders is much larger than the optimal virtual welfare with n bidders.
- **Step three:** Use connection between optimal revenue and virtual welfare.
Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n' = \frac{20n}{\epsilon}$ bidders extract at most $(1 - \epsilon)$ fraction of optimal revenue with n bidders),

then (welfare with $n' = \frac{20n}{\epsilon}$ bidders) $\geq 20 \cdot$ (welfare with n bidders).
Lemma

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders),

then (welfare with \(n' = \frac{20n}{\epsilon} \) bidders) \(\geq 20 \cdot \) (welfare with \(n \) bidders).

\[
\text{First } n \text{ bidders} \quad 1 \text{ item case}
\]

\[
n' = \frac{20n}{\epsilon} \text{ bidders}
\]
Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n' = \frac{20n}{\epsilon}$ bidders extract at most $(1 - \epsilon)$ fraction of optimal revenue with n bidders),

then (welfare with $n' = \frac{20n}{\epsilon}$ bidders) $\geq 20 \cdot$ (welfare with n bidders).

First n bidders

1 item case

$E[welfare with n'] \leq \frac{\epsilon}{20} \cdot E[welfare with n] + (1 - \frac{\epsilon}{20}) \cdot E[2nd highest value with n']$
Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then (welfare with \(n' = \frac{20n}{\epsilon} \) bidders) \(\geq 20 \cdot \) (welfare with \(n \) bidders).

First \(n \) bidders

1 item case

\(n' = \frac{20n}{\epsilon} \) bidders

\[
\mathbb{E}[\text{welfare with } n] \\
\leq \frac{\epsilon}{20} \cdot \mathbb{E}[\text{welfare with } n'] + (1 - \frac{\epsilon}{20}) \cdot \mathbb{E}[\text{2nd highest value with } n'] \\
\leq \frac{\epsilon}{20} \cdot \mathbb{E}[\text{welfare with } n'] + (1 - \epsilon) \mathbb{E}[\text{welfare with } n]
\]
Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders),

then \((\text{welfare with } n' = \frac{20n}{\epsilon} \text{ bidders}) \geq 20 \cdot (\text{welfare with } n \text{ bidders})\).

\[
\begin{align*}
\mathbb{E}[\text{welfare with } n] & \leq \frac{\epsilon}{20} \cdot \mathbb{E}[\text{welfare with } n'] + (1 - \frac{\epsilon}{20}) \cdot \mathbb{E}[\text{2nd highest value with } n'] \\
& \leq \frac{\epsilon}{20} \cdot \mathbb{E}[\text{welfare with } n'] + (1 - \epsilon) \cdot \mathbb{E}[\text{welfare with } n] \\
& \Rightarrow \epsilon \cdot \mathbb{E}[\text{welfare with } n] \leq \frac{\epsilon}{20} \cdot \mathbb{E}[\text{welfare with } n']
\end{align*}
\]
Theorem 1 Proof Outline

Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A simple auction with n' bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove

- **Step one**: The optimal welfare with n' bidders is much larger than the optimal welfare with n bidders.
- **Step two**: The optimal virtual welfare with n' bidders is much larger than the optimal virtual welfare with n bidders.
- **Step three**: Use connection between optimal revenue and virtual welfare.
For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).
[CDW16]
For any fixed number of bidders \(N \), the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified
Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then (virtual welfare with \(n' = \frac{20n}{\epsilon} \) bidders) \(\geq 20 \cdot \) (virtual welfare with \(n \) bidders).
For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with $n' = \frac{20n}{\epsilon}$ bidders extract at most $(1 - \epsilon)$ fraction of optimal revenue with n bidders),

then (virtual welfare with $n' = \frac{20n}{\epsilon}$ bidders) $\geq 20 \cdot$ (virtual welfare with n bidders).

Proof of Theorem 1

revenue from n bidders \leq virtual welfare from n bidders
For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified
Assume event A (second price auction with $n' = \frac{20n}{\epsilon}$ bidders extract at most $(1 - \epsilon)$ fraction of optimal revenue with n bidders), then (virtual welfare with $n' = \frac{20n}{\epsilon}$ bidders) $\geq 20 \cdot$ (virtual welfare with n bidders).

Proof of Theorem 1

revenue from n bidders \leq virtual welfare from n bidders $\leq \frac{1}{20} \cdot$ virtual welfare from n' bidders
[CDW16] For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with $n' = \frac{20n}{\epsilon}$ bidders extract at most $(1 - \epsilon)$ fraction of optimal revenue with n bidders), then (virtual welfare with $n' = \frac{20n}{\epsilon}$ bidders) $\geq 20 \cdot$ (virtual welfare with n bidders).

Proof of Theorem 1

revenue from n bidders \leq virtual welfare from n bidders
\[\leq \frac{1}{20} \cdot \text{virtual welfare from } n' \text{ bidders} \]
\[\leq \frac{8}{20} \cdot \text{revenue from a simple auction with } n' \text{ bidders} \]
Theorem 1
Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A simple auction with n' bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove:

- **Step one**: The optimal welfare with n' bidders is much larger than the optimal welfare with n bidders.
- **Step two**: The optimal virtual welfare with n' bidders is much larger than the optimal virtual welfare with n bidders.
- **Step three**: Use connection between optimal revenue and virtual welfare.
Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then

\[
(\text{virtual welfare with } n' = \frac{20n}{\epsilon} \text{ bidders}) \geq 20 \cdot (\text{virtual welfare with } n \text{ bidders}).
\]
Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then

(virtual welfare with \(n' = \frac{20n}{\epsilon} \) bidders) \(\geq 20 \cdot \) (virtual welfare with \(n \) bidders).

Virtual value from [CDW16]:

\[
\Phi_{j}^{n}(v_{i}, v_{-i}) = \begin{cases}
\tilde{\phi}_{j}(v_{i,j})^{+} & \text{if bidder } i \text{ gains the highest (and non-negative) utility from item } j \text{ in second price auction} \\
v_{i,j} & \text{otherwise}
\end{cases}
\]
Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n' = \frac{20n}{\epsilon}$ bidders extract at most $(1 - \epsilon)$ fraction of optimal revenue with n bidders), then

(virtual welfare with $n' = \frac{20n}{\epsilon}$ bidders) $\geq 20 \cdot$ (virtual welfare with n bidders).

Virtual value from [CDW16]:

$$\Phi_j^n(v_i, v_{-i}) = v_{i,j} \cdot \mathbb{1}(v_i \notin R_j^{v_{-i}}) + \tilde{\phi}_j(v_{i,j})^+ \cdot \mathbb{1}(v_i \in R_j^{v_{-i}}).$$
Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then

(virtual welfare with \(n' = \frac{20n}{\epsilon} \) bidders) \(\geq \) 20 \cdot (virtual welfare with \(n \) bidders).

Virtual value from [CDW16]:

\[
\Phi_{j}^{n}(v_{i}, v_{-i}) = v_{i,j} \cdot \mathbb{1}(v_{i} \notin R_{j}^{v_{-i}}) + \tilde{\phi}_{j}(v_{i,j})^{+} \cdot \mathbb{1}(v_{i} \in R_{j}^{v_{-i}}).
\]

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number \(n \) of bidders participating in the auction.
Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then

(virtual welfare with \(n' = \frac{20n}{\epsilon} \) bidders) \(\geq \) 20 \cdot (virtual welfare with \(n \) bidders).

Virtual value from [CDW16]:

\[
\Phi_j^n(v_i, v_{-i}) = v_{i,j} \cdot 1(v_i \notin R_j^{v_{-i}}) + \tilde{\varphi}_j(v_{i,j})^+ \cdot 1(v_i \in R_j^{v_{-i}}).
\]

Conditions:

- The virtual values must be at most the corresponding values. ✓
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number \(n \) of bidders participating in the auction.
Does virtual value grow with number of bidders?

Lemma Modified
Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then

\[
\text{(virtual welfare with } n' = \frac{20n}{\epsilon} \text{ bidders) } \geq 20 \cdot \text{(virtual welfare with } n \text{ bidders)}.
\]

Virtual value from [CDW16]:

\[
\Phi_j^n(v_i, v_{-i}) = v_{i,j} \cdot 1(v_i \notin R_j^{v_{-i}}) + \tilde{\phi}_j(v_{i,j})^+ \cdot 1(v_i \in R_j^{v_{-i}}).
\]

Conditions:

- The virtual values must be at most the corresponding values. √
- The distribution of virtual values for different bidders are independent and identical. ×
- The distribution of virtual values does not depend on the number \(n \) of bidders participating in the auction.
Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with \(n' = \frac{20n}{\epsilon} \) bidders extract at most \((1 - \epsilon)\) fraction of optimal revenue with \(n \) bidders), then

\[
\text{(virtual welfare with } n' = \frac{20n}{\epsilon} \text{ bidders)} \geq 20 \cdot \text{(virtual welfare with } n \text{ bidders)}.
\]

Virtual value from [CDW16]:

\[
\Phi_j^n(v_i, v_{-i}) = v_{i,j} \cdot 1(v_i \notin R_j^{v_i}) + \tilde{\phi}_j(v_{i,j})^+ \cdot 1(v_i \in R_j^{v_i}).
\]

Conditions:

- The virtual values must be at most the corresponding values. \(\checkmark\)
- The distribution of virtual values for different bidders are independent and identical. \(\times\)
- The distribution of virtual values does not depend on the number \(n \) of bidders participating in the auction. \(\times\)
Redefining Virtual Value

Idea: take the expectation (draw $n - 1$ ghost bidders)
Redefining Virtual Value

Idea: take the expectation (draw $n - 1$ ghost bidders)

A modified virtual value:

$$\Phi^n_j(v_i) = \mathbb{E}_{v_{-i} \sim D_{n-1}} [\Phi^n_j(v_i, v_{-i})]$$
Redefining Virtual Value

Idea: take the expectation (draw $n - 1$ ghost bidders)

A modified virtual value:

$$
\Phi^n_{j}(v_i) = v_{i,j} \cdot \mathbb{E}_{v_{-i} \sim D^{n-1}} \left[1 \left(v_i \notin R_{j}^{v_{-i}} \right) \right] + \tilde{\phi}_j(v_{i,j})^+ \cdot \mathbb{E}_{v_{-i} \sim D^{n-1}} \left[1 \left(v_i \in R_{j}^{v_{-i}} \right) \right].
$$
Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:

$$
\Phi_j^n(v_i) = v_{i,j} \cdot \mathbb{E}_{v_{-i}\sim D^{n-1}} [\mathbb{1} (v_i \notin R_j^{v-i})] + \tilde{\phi}_j(v_{i,j})^+ \cdot \mathbb{E}_{v_{-i}\sim D^{n-1}} [\mathbb{1} (v_i \in R_j^{v-i})].
$$

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.
Redefining Virtual Value

Idea: take the expectation (draw $n - 1$ ghost bidders)

A modified virtual value:

$$\Phi^n_j(v_i) = v_{i,j} \cdot \mathbb{E}_{v_{-i} \sim D^{n-1}} \left[1 \left(v_i \not\in R_j^{v-i}\right) \right] + \tilde{\phi}_j(v_{i,j}) \cdot \mathbb{E}_{v_{-i} \sim D^{n-1}} \left[1 \left(v_i \in R_j^{v-i}\right) \right].$$

Conditions:

- The virtual values must be at most the corresponding values. ✓
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.
Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:

$$\Phi^n_j(v_i) = v_{i,j} \cdot \mathbb{E}_{v_{-i} \sim \mathcal{D}^{n-1}} \left[\mathbb{I} \left(v_i \notin R_j^{v_{-i}} \right) \right] + \tilde{\phi}_j(v_{i,j}) \cdot \mathbb{E}_{v_{-i} \sim \mathcal{D}^{n-1}} \left[\mathbb{I} \left(v_i \in R_j^{v_{-i}} \right) \right].$$

Conditions:

- The virtual values must be at most the corresponding values. ✓
- The distribution of virtual values for different bidders are independent and identical. ✓
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.
Redefining Virtual Value

Idea: take the expectation (draw \(n - 1 \) ghost bidders)

A modified virtual value:

\[
\Phi^n_j(v_i) = v_{i,j} \cdot \mathbb{E}_{v_i \sim D^{n-1}} \left[1 \left(v_i \notin R_j^{v_i} \right) \right] + \phi_j(v_{i,j})^+ \cdot \mathbb{E}_{v_i \sim D^{n-1}} \left[1 \left(v_i \in R_j^{v_i} \right) \right].
\]

Conditions:

- The virtual values must be at most the corresponding values. ✓
- The distribution of virtual values for different bidders are independent and identical. ✓
- The distribution of virtual values does not depend on the number \(n \) of bidders participating in the auction. ✗
Redefining Virtual Value

Idea: fix some large $n' > n$, draw $n' - 1$ bidder values $w_i \sim \mathcal{D}^{n'-1}$
Redefining Virtual Value

Idea: fix some large $n' > n$, draw $n' - 1$ bidder values $w_{-i} \sim \mathcal{D}^{n'-1}$

A modified virtual value:

$$
\Phi^n_j(v_i) = v_{i,j} \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n'-1}} \mathbb{I}(w_i \notin R_j^{w_{-i}}) + \tilde{\phi}_j(v_{i,j})^+, \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n'-1}} \mathbb{I}(w_i \in R_j^{w_{-i}}).
$$

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).
Idea: fix some large \(n' > n \), draw \(n' - 1 \) bidder values \(w_{-i} \sim \mathcal{D}^{n' - 1} \)

A modified virtual value:

\[
\Phi^n_j(v_i) = v_{i,j} \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n' - 1}} \mathbb{I}(w_i \not\in R^w_{j-i}) + \varphi_j(v_{i,j})^+ \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n' - 1}} \mathbb{I}(w_i \in R^w_{j-i}).
\]
Redefining Virtual Value

Idea: fix some large $n' > n$, draw $n' - 1$ bidder values $w_{-i} \sim \mathcal{D}^{n' - 1}$

A modified virtual value:

$$
\Phi^n_j(v_i) = v_{i,j} \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n' - 1}} \mathbbm{1}(w_i \notin R_j^{w_{-i}}) + \tilde{\phi}_j(v_{i,j}) \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n' - 1}} \mathbbm{1}(w_i \in R_j^{w_{-i}}).
$$

Conditions:

- The virtual values must be at most the corresponding values. ✓
- The distribution of virtual values for different bidders are independent and identical. ✓
- The distribution of virtual values does not depend on the number n of bidders participating in the auction. ✓
Redefining Virtual Value

Idea: fix some large $n' > n$, draw $n' - 1$ bidder values $w_{-i} \sim \mathcal{D}^{n'-1}$

A modified virtual value:

$$\Phi^*_j(v_i) = v_{i,j} \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n'-1}} \mathbb{1}(w_i \not\in R^w_j) + \bar{\varphi}_j(v_{i,j})^+ \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n'-1}} \mathbb{1}(w_i \in R^w_j).$$

[CDW16]
For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).
Redefining Virtual Value

Idea: fix some large $n' > n$, draw $n' - 1$ bidder values $w_{-i} \sim \mathcal{D}^{n'-1}$

A modified virtual value:

$$\Phi^*_j(v_i) = v_{i,j} \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n'-1}} \mathbbm{1}(w_i \not\in R_{j}^{w_{-i}}) + \bar{\phi}_j(v_{i,j})^+ \cdot \mathbb{E}_{w_{-i} \sim \mathcal{D}^{n'-1}} \mathbbm{1}(w_i \in R_{j}^{w_{-i}}).$$

[CDW16]
For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee). ✅
Theorem 1

Let $\epsilon > 0$ and $n' = O(n/\epsilon)$. At least one of the following hold:

1. A $(1 - \epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n' bidders.
2. A simple auction with n' bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold

Assuming event A, we prove

- **Step one:** The optimal welfare with n' bidders is much larger than the optimal welfare with n bidders.
- **Step two:** The optimal virtual welfare with n' bidders is much larger than the optimal virtual welfare with n bidders.
- **Step three:** Use connection between optimal revenue and virtual welfare.
Conclusion

We show that, for all m and n, an arbitrarily large constant fraction of the optimal revenue from selling m items to n bidders can be obtained via simple auctions with $O(n)$ bidders.

Future directions:
• Obtains full optimal revenue with $O(n)$ bidders?
• Obtain almost optimal revenue with $n + o(n)$ bidders or prove a lower bound?
• Our work can also be viewed as proving for additive valuations an equivalence between auctions that gets a constant fraction of the optimal revenue and auctions that has $O(n)$ enhanced competition. Can we prove this for more general class of valuation functions?
Conclusion

We show that, for all m and n, an arbitrarily large constant fraction of the optimal revenue from selling m items to n bidders can be obtained via simple auctions with $O(n)$ bidders.

Future directions:

- Obtains full optimal revenue with $O(n)$ bidders?
- Obtain almost optimal revenue with $n + o(n)$ bidders or prove a lower bound?
- Our work can also be viewed as proving for additive valuations an equivalence between auctions that gets a constant fraction of the optimal revenue and auctions that has $O(n)$ enhanced competition. Can we prove this for more general class of valuation functions?
Thank you!

Questions?

