Achieving Optimal Revenue with Enhanced Competition

Linda Cai

General Exam at Princeton University

Overview of My Research

Auction Design

- Prove that simple auction can achieve 99\% of optimal revenue with constant enhanced competition [EC21] Joint work with Raghuvansh Saxena
- Implementation in advised strategies: a new solution concept for self interested behavior when being truthful is NP-hard [ITCS20] Joint work with Clayton Thomas and Matt Weinberg
- Repeated auction design for buyers using no regret learning algorithms Joint work with Matt Weinberg, Evan Wildenhain and Shirley Zhang

Stable Matching

- A simple proof for short-side advantage in random matching markets [SOSA21]

Overview of My Research

Auction Design

- 99\% Revenue with Constant Enhanced Competition [EC21]

Joint work with Raghuvansh Saxena

- Implementation in advised strategies: a new solution concept for self interested behavior when being truthful is NP-hard [ITCS20] Joint work with Clayton Thomas and Matt Weinberg
- Repeated auction design for buyers using no regret learning algorithms
Joint work with Matt Weinberg, Evan Wildenhain and Shirley Zhang

Stable Matching

- A simple proof for short-side advantage in random matching markets [SOSA21]
Joint work with Clayton Thomas and Matt Weinberg

Outline

Goal: design truthful auction that gets as much revenue as possible

Outline

Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item

Outline

Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item
- Maximizing revenue is hard when there are multiple items

Outline

Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item
- Maximizing revenue is hard when there are multiple items
- Enhanced competition: can a simple auction achieve the optimal revenue by recruiting more bidders

Outline

Goal: design truthful auction that gets as much revenue as possible

- Maximizing revenue is easy when there is one item
- Maximizing revenue is hard when there are multiple items
- Enhanced competition: can a simple auction achieve the optimal revenue by recruiting more bidders
- Our result: simple auction can achieve 99% of the optimal revenue with constant enhanced competition

Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_{i}: 2^{m} \rightarrow R^{+}$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_{i} to bidder i, charges price p_{i}.

Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_{i}: 2^{m} \rightarrow R^{+}$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_{i} to bidder i, charges price p_{i}.

Bidder Goal: Maximizes (expected) utility $=v_{i}\left(S_{i}\right)-p_{i}$

Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_{i}: 2^{m} \rightarrow R^{+}$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_{i} to bidder i, charges price p_{i}.

Bidder Goal: Maximizes (expected) utility $=v_{i}\left(S_{i}\right)-p_{i}$
Auctioneer Goal: Maximizes (expected) revenue $=\sum_{i} p_{i}$.

Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_{i}: 2^{m} \rightarrow R^{+}$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_{i} to bidder i, charges price p_{i}.

Bidder Goal: Maximizes (expected) utility $=v_{i}\left(S_{i}\right)-p_{i}$
Auctioneer Goal: Maximizes (expected) revenue $=\sum_{i} p_{i}$.
Bidder goal different from auctioneer goal, how can the auctioneer predict bidder behavior?

Revenue Maximizing Auction

Combinatorial auction: n bidders, m items.

- Each bidder i has valuation function $v_{i}: 2^{m} \rightarrow R^{+}$.
- Bidders participate in some (possibly interactive) protocol.
- Auctioneer awards the set of items S_{i} to bidder i, charges price p_{i}.

Bidder Goal: Maximizes (expected) utility $=v_{i}\left(S_{i}\right)-p_{i}$
Auctioneer Goal: Maximizes (expected) revenue $=\sum_{i} p_{i}$.
Bidder goal different from auctioneer goal, how can the auctioneer predict bidder behavior?

Truthful Auction (Informal)

An auction is truthful if it is in the bidder's best interest to behave truthfully (e.g. bidding their own value)

Auctioneer Constraint: Use truthful auctions

Revenue Maximizing Auction: Our Setting

Revenue Maximizing Auction: Our Setting

$$
v_{i} \sim \mathcal{D}=\times_{j} \mathcal{D}_{j}
$$

Revenue Maximizing Auction: Our Setting

$$
v_{i} \sim \mathcal{D}=\times_{j} \mathcal{D}_{j}
$$

n i.i.d additive bidders, m items

Revenue Maximizing Auction: Our Setting

$$
v_{i} \sim \mathcal{D}=\times_{j} \mathcal{D}_{j}
$$

n i.i.d additive bidders, m items

Revenue Maximizing Auction: Our Setting

$$
v_{i} \sim \mathcal{D}=\times_{j} \mathcal{D}_{j}
$$

n i.i.d additive bidders, m items

Revenue Maximizing Auction: Our Setting

$v_{i} \sim \mathcal{D}=\times_{j} \mathcal{D}_{j}$

.
n i.i.d additive bidders, m items

Revenue Maximizing Auction: Our Setting

$v_{i} \sim \mathcal{D}=\times_{j} \mathcal{D}_{j}$

Bayesian Incentive Compatible: the bidder's expected utility is maximized by behaving truthfully when other bidders also behave truthfully

Maximizing Revenue: Single Item Setting

One item, one bidder:

Maximizing Revenue: Single Item Setting

One item, one bidder:
Myerson
The optimal auction is a posted price auction.

Maximizing Revenue: Single Item Setting

One item, one bidder:
Myerson
The optimal auction is a posted price auction.

Example: $v \sim U[0,1]$

Maximizing Revenue: Single Item Setting

One item, one bidder:
Myerson
The optimal auction is a posted price auction.

Example: $v \sim U[0,1]$
Revenue from selling item at price $p: p \cdot \operatorname{Pr}[$ value $\geq p]=p(1-p)$

Maximizing Revenue: Single Item Setting

One item, one bidder:
Myerson
The optimal auction is a posted price auction.

Example: $v \sim U[0,1]$
Revenue from selling item at price $p: p \cdot \operatorname{Pr}[$ value $\geq p]=p(1-p)$
Optimal auction: sell item at price $p=1 / 2$

Maximizing Revenue: Single Item Setting

One item, multiple bidders:

Maximizing Revenue: Single Item Setting

One item, multiple bidders:
Let F be the c.d.f of D, let f be the p.d.f of D
(each bidder i 's value $v_{i} \sim D$)
Myerson
The optimal auction maximizes the expected Myerson virtual value $\varphi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)}$ of the bidder that gets the item.

Maximizing Revenue: Single Item Setting

One item, multiple bidders:
Let F be the c.d.f of D, let f be the p.d.f of D
(each bidder i 's value $v_{i} \sim D$)

Myerson

The optimal auction maximizes the expected Myerson virtual value $\varphi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)}$ of the bidder that gets the item.

When the virtual value function is regular, the optimal auction is second price auction with reserve.

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder

$$
\begin{aligned}
& v_{1}=1 \mathrm{w} . \mathrm{p} .1 / 2 \text { and } v_{1}=2 \mathrm{w} . \mathrm{p} .1 / 2 \\
& v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4 \text { and } v_{2}=4 \mathrm{w} . \mathrm{p} .1 / 4
\end{aligned}
$$

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w} . \mathrm{p} .1 / 4$
Optimal deterministic auction: selling separately

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w} . \mathrm{p} .1 / 4$
Optimal deterministic auction: selling separately
Revenue: 2
Menu $\left(p_{1}, p_{2}\right)$: get item 1 w.p. p_{1}, get item 2 w.p. p_{2}

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w} . \mathrm{p} .1 / 4$
Optimal deterministic auction: selling separately
Revenue: 2
Menu (p_{1}, p_{2}): get item 1 w.p. p_{1}, get item 2 w.p. p_{2}
Randomize auction: $(1, \epsilon)$ with price $2+\epsilon$
$(\epsilon, 1)$ with price $4+\epsilon$
$(1,1)$ with price $6-3 \epsilon$

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w}$. p. $1 / 4$
Optimal deterministic auction: selling separately
Revenue: 2
Menu $\left(p_{1}, p_{2}\right)$: get item 1 w.p. p_{1}, get item 2 w.p. p_{2}
Randomize auction: $(1, \epsilon)$ with price $2+\epsilon$ preferred by $v_{1}=2, v_{2}=1$
$(\epsilon, 1)$ with price $4+\epsilon$
$(1,1)$ with price $6-3 \epsilon$

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w}$. p. $1 / 4$
Optimal deterministic auction: selling separately
Revenue: 2
Menu $\left(p_{1}, p_{2}\right)$: get item 1 w.p. p_{1}, get item 2 w.p. p_{2}
Randomize auction: $(1, \epsilon)$ with price $2+\epsilon$ preferred by $v_{1}=2, v_{2}=1$
$(\epsilon, 1)$ with price $4+\epsilon \quad$ preferred by $v_{1}=1, v_{2}=4$
$(1,1)$ with price $6-3 \epsilon$

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w} . \mathrm{p} .1 / 4$
Optimal deterministic auction: selling separately
Revenue: 2
Menu (p_{1}, p_{2}): get item 1 w.p. p_{1}, get item 2 w.p. p_{2}
Randomize auction: $(1, \epsilon)$ with price $2+\epsilon$ preferred by $v_{1}=2, v_{2}=1$
$(\epsilon, 1)$ with price $4+\epsilon \quad$ preferred by $v_{1}=1, v_{2}=4$
$(1,1)$ with price $6-3 \epsilon$ preferred by $v_{1}=2, v_{2}=4$

Maximizing Revenue: Multiple Item Setting

Example: two items, one bidder
$v_{1}=1$ w.p. $1 / 2$ and $v_{1}=2$ w.p. $1 / 2$
$v_{2}=1 \mathrm{w} . \mathrm{p} .3 / 4$ and $v_{2}=4 \mathrm{w} . \mathrm{p} .1 / 4$
Optimal deterministic auction: selling separately
Revenue: 2
Menu (p_{1}, p_{2}): get item 1 w.p. p_{1}, get item 2 w.p. p_{2}
Randomize auction: $(1, \epsilon)$ with price $2+\epsilon$ preferred by $v_{1}=2, v_{2}=1$
$(\epsilon, 1)$ with price $4+\epsilon \quad$ preferred by $v_{1}=1, v_{2}=4$
$(1,1)$ with price $6-3 \epsilon$ preferred by $v_{1}=2, v_{2}=4$
Revenue: $\frac{1}{2} \cdot \frac{3}{4}(2+\epsilon)+\frac{1}{2} \cdot \frac{1}{4}(4+\epsilon)+\frac{1}{2} \cdot \frac{1}{4}(6-3 \epsilon)=2+\frac{\epsilon}{8}$

Maximizing Revenue: Multiple Item Setting

Revenue optimal auctions are messy when $m>1$:

- (Non-monotonicity) It might get less revenue from bidders with higher values. [HR15]
- (Randomness) It might sell "lottery tickets" for sets of items. [Tha04, MV07, Pav11, DDT17]
- (Intractability) It might present uncountably infinite number of "lottery tickets". [HN13, DDT14]

Approximating Revenue Is Possible But With Unsatisfactory Constants

Paper	n	m	Bidder Type	Approximation Ratio
[BILW14]	$n=1$	arbitrary	additive	6
[CDW16]	arbitrary	arbitrary	additive	8
[GK16]	arbitrary	arbitrary	additive, regular	200 independent auction)
[CZ17]	arbitrary	arbitrary	XOS	268
[CZ17]	arbitrary	arbitrary	subadditive	$\log m$
		\ldots		

Enhanced Competition

Can we get $(1-\epsilon)$ fraction of the revenue with a simple auction?

Enhanced Competition

Can we get $(1-\epsilon)$ fraction of the revenue with a simple auction? Yes! With enhanced competition!

Enhanced Competition

Can we get $(1-\epsilon)$ fraction of the revenue with a simple auction?
Yes! With enhanced competition!

Enhanced Competition

Find number of bidders $n^{\prime}>n$ where a simple auction with n^{\prime} bidders (almost) match the revenue of the optimal auction with n bidders.

Enhanced Competition

Can we get $(1-\epsilon)$ fraction of the revenue with a simple auction?
Yes! With enhanced competition!

Enhanced Competition

Find number of bidders $n^{\prime}>n$ where a simple auction with n^{\prime} bidders (almost) match the revenue of the optimal auction with n bidders.

- Motivation: Instead of spending effort designing the optimal (or close to optimal) auction, spend effort recruiting bidders!

Enhanced Competition

Can we get $(1-\epsilon)$ fraction of the revenue with a simple auction?
Yes! With enhanced competition!

Enhanced Competition

Find number of bidders $n^{\prime}>n$ where a simple auction with n^{\prime} bidders (almost) match the revenue of the optimal auction with n bidders.

- Motivation: Instead of spending effort designing the optimal (or close to optimal) auction, spend effort recruiting bidders!
- Focus of our paper: constant enhanced competition - Is it possible to use only $n^{\prime}=O(n)$ bidders?

Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

Progress on Constant Enhanced Competition

For which n, m is constant enhanced competition enough to get almost full revenue?

Our Results

Theorem 1 (informal)

A simple auction with $n^{\prime}=O(n / \epsilon)$ bidders can obtain a $(1-\epsilon)$ fraction of the optimal revenue with n bidders.

Our Results

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction (either selling the items separately or a second price auction with an entry fee) with n^{\prime} bidders generates more revenue than the optimal auction with n bidders.

Our Results

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction (either selling the items separately or a second price auction with an entry fee) with n^{\prime} bidders generates c times more revenue than the optimal auction with n bidders.

Our Results

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. Any auction that guarantees a constant approximation to the optimal revenue with n^{\prime} bidders generates c times more revenue than the optimal auction with n bidders.

Our Results

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. Any auction that guarantees a constant approximation to the optimal revenue with n^{\prime} bidders generates c times more revenue than the optimal auction with n bidders.

Note: for any auction (or best of a group of auctions) to get near optimal revenue with constant enhance competition, it is necessary for the auction to guarantee a constant fraction of the optimal revenue. Our result can be viewed as saying this is sufficient as well.

Our Results for Regular Distributions

We will propose a prior independent auction that generates almost optimal revenue with constant enhanced competition.

Our Results for Regular Distributions

We will propose a prior independent auction that generates almost optimal revenue with constant enhanced competition.

Theorem 2

Let $\epsilon>0$ and $n^{\prime}=O\left(n / \epsilon^{2}\right)$. When the items are regular, at least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A prior-independent second price auction with an entry fee with n^{\prime} bidders generates $\frac{1}{\epsilon}$ times more revenue than the optimal auction with n bidders.

Our Results for Regular Distributions

Theorem 2

Let $\epsilon>0$ and $n^{\prime}=O\left(n / \epsilon^{2}\right)$. When the items are regular, at least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A prior-independent second price auction with an entry fee and n^{\prime} bidders generates $\frac{1}{\epsilon}$ times more revenue than the optimal auction with n bidders.

Hybrid Auction:

- runs second price auction w.p. $1-\epsilon$
- runs prior-independent second price auction with an entry fee w.p. ϵ

Our Results for Regular Distributions

Theorem 2

Let $\epsilon>0$ and $n^{\prime}=O\left(n / \epsilon^{2}\right)$. When the items are regular, at least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A prior-independent second price auction with an entry fee and n^{\prime} bidders generates $\frac{1}{\epsilon}$ times more revenue than the optimal auction with n bidders.

Hybrid Auction:

- runs second price auction w.p. $1-\epsilon$
- runs prior-independent second price auction with an entry fee w.p. ϵ

The hybrid auction with $n^{\prime}=O\left(n / \epsilon^{2}\right)$ bidders obtains $(1-\epsilon)^{2}$-fraction of the optimal revenue with n bidders.

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove:

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove:

- Step one: The optimal welfare with n^{\prime} bidders is much larger than the optimal welfare with n bidders.

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove:

- Step one: The optimal welfare with n^{\prime} bidders is much larger than the optimal welfare with n bidders.
- Step two: The optimal virtual welfare with n^{\prime} bidders is much larger than the optimal virtual welfare with n bidders.

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove:

- Step one: The optimal welfare with n^{\prime} bidders is much larger than the optimal welfare with n bidders.
- Step two: The optimal virtual welfare with n^{\prime} bidders is much larger than the optimal virtual welfare with n bidders.
- Step three: Use connection between optimal revenue and virtual welfare.

Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders),
then (welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (welfare with n bidders).

Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then (welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (welfare with n bidders).

Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then (welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (welfare with n bidders).

First n bidders
1 item case

\mathbb{E} [welfare with n]
$\leq \frac{\epsilon}{20} \cdot \mathbb{E}\left[\right.$ welfare with $\left.n^{\prime}\right]+\left(1-\frac{\epsilon}{20}\right) \cdot \mathbb{E}\left[2\right.$ nd highest value with $\left.n^{\prime}\right]$

Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders),
then (welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (welfare with n bidders).
First n bidders
1 item case

\mathbb{E} [welfare with n]
$\leq \frac{\epsilon}{20} \cdot \mathbb{E}\left[\right.$ welfare with $\left.n^{\prime}\right]+\left(1-\frac{\epsilon}{20}\right) \cdot \mathbb{E}\left[2\right.$ nd highest value with $\left.n^{\prime}\right]$
$\leq \frac{\epsilon}{20} \cdot \mathbb{E}\left[\right.$ welfare with $\left.n^{\prime}\right]+(1-\epsilon) \mathbb{E}[$ welfare with $n]$

Does welfare grow with number of bidders?

Lemma

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders),
then (welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (welfare with n bidders).
First n bidders
1 item case

\mathbb{E} [welfare with n]
$\leq \frac{\epsilon}{20} \cdot \mathbb{E}\left[\right.$ welfare with $\left.n^{\prime}\right]+\left(1-\frac{\epsilon}{20}\right) \cdot \mathbb{E}\left[2\right.$ nd highest value with $\left.n^{\prime}\right]$
$\leq \frac{\epsilon}{20} \cdot \mathbb{E}\left[\right.$ welfare with $\left.n^{\prime}\right]+(1-\epsilon) \mathbb{E}[$ welfare with $n]$
$\Rightarrow \epsilon \cdot \mathbb{E}[$ welfare with $n] \leq \frac{\epsilon}{20} \cdot \mathbb{E}\left[\right.$ welfare with $\left.n^{\prime}\right]$

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove

- Step one: The optimal welfare with n^{\prime} bidders is much larger than the optimal welfare with n bidders.
- Step two: The optimal virtual welfare with n^{\prime} bidders is much larger than the optimal virtual welfare with n bidders.
- Step three: Use connection between optimal revenue and virtual welfare.

Connection Between Optimal Revenue And Virtual Welfare

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Connection Between Optimal Revenue And Virtual Welfare

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most ($1-\epsilon$) fraction of optimal revenue with n bidders), then (virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Connection Between Optimal Revenue And Virtual Welfare

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most ($1-\epsilon$) fraction of optimal revenue with n bidders), then (virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Proof of Theorem 1

revenue from n bidders \leq virtual welfare from n bidders

Connection Between Optimal Revenue And Virtual Welfare

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most ($1-\epsilon$) fraction of optimal revenue with n bidders), then (virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Proof of Theorem 1

revenue from n bidders \leq virtual welfare from n bidders
$\leq \frac{1}{20}$. virtual welfare from n^{\prime} bidders

Connection Between Optimal Revenue And Virtual Welfare

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most ($1-\epsilon$) fraction of optimal revenue with n bidders), then (virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Proof of Theorem 1

revenue from n bidders \leq virtual welfare from n bidders
$\leq \frac{1}{20}$. virtual welfare from n^{\prime} bidders
$\leq \frac{8}{20} \cdot$ revenue from a simple auction with n^{\prime} bidders ${ }_{19}$

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove:

- Step one: The optimal welfare with n^{\prime} bidders is much larger than the optimal welfare with n bidders.
- Step two: The optimal virtual welfare with n^{\prime} bidders is much larger than the optimal virtual welfare with n bidders.
- Step three: Use connection between optimal revenue and virtual welfare.

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then (virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most ($1-\epsilon$) fraction of optimal revenue with n bidders), then
(virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Virtual value from [CDW16]:
$\Phi_{j}^{n}\left(v_{i}, v_{-i}\right)= \begin{cases}\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} & \text {if bidder } i \text { gains the highest (and non-negative) } \\ & \text { utility from item } j \text { in second price auction } \\ v_{i, j} & \text { otherwise }\end{cases}$

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then
(virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Virtual value from [CDW16]:

$$
\Phi_{j}^{\eta}\left(v_{i}, v_{-i}\right)=v_{i, j} \cdot \mathbb{1}\left(v_{i} \notin R_{j}^{v_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \cdot \mathbb{1}\left(v_{i} \in R_{j}^{v-i}\right) .
$$

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then
(virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Virtual value from [CDW16]:

$$
\Phi_{j}^{\eta}\left(v_{i}, v_{-i}\right)=v_{i, j} \cdot \mathbb{1}\left(v_{i} \notin R_{j}^{v_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \cdot \mathbb{1}\left(v_{i} \in R_{j}^{v-i}\right) .
$$

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then
(virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Virtual value from [CDW16]:

$$
\Phi_{j}^{\eta}\left(v_{i}, v_{-i}\right)=v_{i, j} \cdot \mathbb{1}\left(v_{i} \notin R_{j}^{v_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \cdot \mathbb{1}\left(v_{i} \in R_{j}^{v-i}\right) .
$$

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then
(virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Virtual value from [CDW16]:

$$
\Phi_{j}^{\eta}\left(v_{i}, v_{-i}\right)=v_{i, j} \cdot \mathbb{1}\left(v_{i} \notin R_{j}^{v_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \cdot \mathbb{1}\left(v_{i} \in R_{j}^{v-i}\right) .
$$

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical. \mathbf{X}
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Does virtual value grow with number of bidders?

Lemma Modified

Assume event A (second price auction with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders extract at most $(1-\epsilon)$ fraction of optimal revenue with n bidders), then
(virtual welfare with $n^{\prime}=\frac{20 n}{\epsilon}$ bidders) ≥ 20. (virtual welfare with n bidders).

Virtual value from [CDW16]:

$$
\Phi_{j}^{\eta}\left(v_{i}, v_{-i}\right)=v_{i, j} \cdot \mathbb{1}\left(v_{i} \notin R_{j}^{v_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \cdot \mathbb{1}\left(v_{i} \in R_{j}^{v-i}\right) .
$$

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical. \mathbf{X}
- The distribution of virtual values does not depend on the number n of bidders participating in the auction. \mathbf{X}

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=\underset{v_{-i} \sim D^{n-1}}{\mathbb{E}}\left[\Phi_{j}^{n}\left(v_{i}, v_{-i}\right)\right]$

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{v_{-i} \sim D^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \notin R_{j}^{v^{-i}}\right)\right]+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \in R_{j}^{v_{-i}}\right)\right]$.

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \notin R_{j}^{v^{-i}}\right)\right]+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \in R_{j}^{v^{-i}}\right)\right]$.
Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \notin R_{j}^{v^{-i}}\right)\right]+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \in R_{j}^{v^{-i}}\right)\right]$.
Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \notin R_{j}^{v^{-i}}\right)\right]+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \in R_{j}^{v^{-i}}\right)\right]$.
Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Redefining Virtual Value

Idea: take the expectation (draw $n-1$ ghost bidders)

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \notin R_{j}^{v^{-i}}\right)\right]+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{v_{-i} \sim \mathcal{D}^{n-1}}{\mathbb{E}}\left[\mathbb{1}\left(v_{i} \in R_{j}^{v^{-i}}\right)\right]$.
Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction. \mathbf{X}

Redefining Virtual Value

Idea: fix some large $n^{\prime}>n$, draw $n^{\prime}-1$ bidder values $w_{-i} \sim \mathcal{D}^{n^{\prime}-1}$

Redefining Virtual Value

Idea: fix some large $n^{\prime}>n$, draw $n^{\prime}-1$ bidder values $w_{-i} \sim \mathcal{D}^{n^{\prime}-1}$

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \notin R_{j}^{w_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \in R_{j}^{w_{-i}}\right)$.

Redefining Virtual Value

Idea: fix some large $n^{\prime}>n$, draw $n^{\prime}-1$ bidder values $w_{-i} \sim \mathcal{D}^{n^{\prime}-1}$

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \notin R_{j}^{w_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \in R_{j}^{w_{-i}}\right)$.

Redefining Virtual Value

Idea: fix some large $n^{\prime}>n$, draw $n^{\prime}-1$ bidder values $w_{-i} \sim \mathcal{D}^{n^{\prime}-1}$

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \notin R_{j}^{w_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \in R_{j}^{w_{-i}}\right)$.

Conditions:

- The virtual values must be at most the corresponding values.
- The distribution of virtual values for different bidders are independent and identical.
- The distribution of virtual values does not depend on the number n of bidders participating in the auction.

Redefining Virtual Value

Idea: fix some large $n^{\prime}>n$, draw $n^{\prime}-1$ bidder values $w_{-i} \sim \mathcal{D}^{n^{\prime}-1}$

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \notin R_{j}^{w_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \in R_{j}^{w_{-i}}\right)$.

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Redefining Virtual Value

Idea: fix some large $n^{\prime}>n$, draw $n^{\prime}-1$ bidder values $w_{-i} \sim \mathcal{D}^{n^{\prime}-1}$

A modified virtual value:
$\Phi_{j}^{n}\left(v_{i}\right)=v_{i, j} \cdot \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \notin R_{j}^{w_{-i}}\right)+\tilde{\varphi}_{j}\left(v_{i, j}\right)^{+} \underset{w_{-i} \sim D^{n^{\prime}-1}}{\mathbb{E}} \mathbb{1}\left(w_{i} \in R_{j}^{w_{-i}}\right)$.

[CDW16]

For any fixed number of bidders N, the optimal revenue is at most the expected virtual welfare, which is at most 8 times revenue from a simple auction (selling separately or second price with entry fee).

Theorem 1 Proof Outline

Theorem 1

Let $\epsilon>0$ and $n^{\prime}=O(n / \epsilon)$. At least one of the following hold:

1. A $(1-\epsilon)$-fraction of the optimal revenue with n bidders is obtained by a second price auction with n^{\prime} bidders.
2. A simple auction with n^{\prime} bidders generates more revenue than the optimal revenue with n bidders.

Event A: case (1) does not hold
Assuming event A, we prove

- Step one: The optimal welfare with n^{\prime} bidders is much larger than the optimal welfare with n bidders.
- Step two: The optimal virtual welfare with n^{\prime} bidders is much larger than the optimal virtual welfare with n bidders.
- Step three: Use connection between optimal revenue and virtual welfare.

Conclusion

We show that, for all m and n, an arbitrarily large constant fraction of the optimal revenue from selling m items to n bidders can be obtained via simple auctions with $O(n)$ bidders.

Conclusion

We show that, for all m and n, an arbitrarily large constant fraction of the optimal revenue from selling m items to n bidders can be obtained via simple auctions with $O(n)$ bidders.

Future directions:

- Obtains full optimal revenue with $O(n)$ bidders?
- Obtain almost optimal revenue with $n+o(n)$ bidders or prove a lower bound?
- Our work can also be viewed as proving for additive valuations an equivalence between auctions that gets a constant fraction of the optimal revenue and auctions that has $O(n)$ enhanced competition. Can we prove this for more general class of valuation functions?

Thank you!

Questions?

References

围 Moshe Babaioff，Nicole Immorlica，Brendan Lucier，and S．Matthew Weinberg，A simple and approximately optimal mechanism for an additive buyer，55th IEEE Annual Symposium on Foundations of Computer Science，FOCS 2014，Philadelphia，PA，USA，October 18－21，2014，2014，pp．21－30．
围 Jeremy Bulow and Paul Klemperer，Auctions versus negotiations， The American Economic Review（1996），180－194．
囯 Hedyeh Beyhaghi and S．Matthew Weinberg，Optimal（and benchmark－optimal）competition complexity for additive buyers over independent items，Proceedings of the 51st ACM Symposium on Theory of Computing Conference（STOC）， 2019.

References ii

- Yang Cai, Nikhil Devanur, and S. Matthew Weinberg, A duality based unified approach to bayesian mechanism design, Proceedings of the 48th ACM Conference on Theory of Computation(STOC), 2016.

Yang Cai and Mingfei Zhao, Simple mechanisms for subadditive buyers via duality, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, 2017, pp. 170-183.
嗇 Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos, The Complexity of Optimal Mechanism Design, the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.

易
__ Strong duality for a multiple-good monopolist, Econometrica 85 (2017), no. 3, 735-767.

References iif

Richal Feldman, Ophir Friedler, and Aviad Rubinstein, 99\% revenue via enhanced competition, Proceedings of the 2018 ACM Conference on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018, 2018, pp. 443-460.
R Kira Goldner and Anna R Karlin, A prior-independent revenue-maximizing auction for multiple additive bidders, Proceedings of the 12th International Conference on Web and Internet Economics-Volume 10123, 2016, pp. 160-173.
目 Sergiu Hart and Noam Nisan, The menu-size complexity of auctions, the 14th ACM Conference on Electronic Commerce (EC), 2013.

國 Sergiu Hart and Philip J. Reny, Maximizing Revenue with Multiple Goods: Nonmonotonicity and Other Observations, Theoretical Economics 10 (2015), no. 3, 893-922.

References iv

國 A. M. Manelli and D. R. Vincent, Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly, Journal of Economic Theory 137 (2007), no. 1, 153-185.
(Gregory Pavlov, Optimal mechanism for selling two goods, The B.E. Journal of Theoretical Economics 11 (2011), no. 3.
氥 John Thanassoulis, Haggling over substitutes, Journal of Economic Theory 117 (2004), 217-245.

