PANDORA'S PROBLEM WITH NONOBLIGATORY INSPECTION: OPTIMAL STRUCTURE AND A PTAS

Linda Cai

Joint work with Hedyeh Beyhaghi
OUR QUEST OF SEARCH
OUR QUEST OF SEARCH
OUR QUEST OF SEARCH
Why would anyone buy an identical product at a higher price?
WEITZMAN’S ANSWER: SEARCH FRICTION
WEIZTMAN’S ANSWER: SEARCH FRICTION

Buying from a car dealer: the cost of inspection is high
WEITZMAN’S ANSWER: SEARCH FRICTION

Buying from a car dealer: the cost of inspection is high

Buying from a trusted friend: the cost of inspection is low
PANDORA’S BOX PROBLEM
(Introduced by Weitzman79)

\[1 \quad \ldots \quad i \quad i+1 \quad \ldots \quad n \]
PANDORA’S BOX PROBLEM
(Introduced by Weitzman79)

\[v_i \sim D_i \]
PANDORA’S BOX PROBLEM
(Introduced by Weitzman 79)

Value: \(v_i \sim D_i \)
Cost: \(c_i \)
PANDORA’S BOX PROBLEM
(Introduced by Weitzman79)

The agent can inspect boxes in any order they like, and their goal is to maximize their Expected Utility = E[value of selected box – sum of inspection costs]
PANDORA’S BOX PROBLEM
(Introduced by Weitzman79)

![Diagram of boxes with indices 1 through n]

Value: $v_i \sim D_i$
Cost: c_i

The agent can inspect boxes in any order they like, and their goal is to maximize their Expected Utility $= E[\text{value of selected box} - \text{sum of inspection costs}]$

The agent must inspect a box before selecting it
The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[value of selected box – sum of inspection costs]

The agent must inspect a box before selecting it
The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[\text{value of selected box} – \text{sum of inspection costs}]

The agent must inspect a box before selecting it
PANDORA’S BOX PROBLEM
(Introduced by Weitzman 79)

The agent can inspect boxes in any order they like, and their goal is to maximize their Expected Utility:

\[\text{Expected Utility} = E[\text{value of selected box} - \text{sum of inspection costs}] \]

The agent must inspect a box before selecting it.
The agent can inspect boxes in any order they like, and their goal is to maximize their Expected Utility:

\[\text{Expected Utility} = E[\text{value of selected box} - \text{sum of inspection costs}] \]

The agent must inspect a box before selecting it.
PANDORA’S BOX: EXAMPLE

Box 1

\[v_1 = \begin{cases} \frac{1}{\epsilon} & \text{w. p. } \epsilon \\ 0 & \text{w. p. } 1 - \epsilon \end{cases} \]

\[c_1 = \frac{1}{2} \]

Box 2

\[v_2 = \begin{cases} 1 & \text{w. p. } \frac{1}{2} \\ 0 & \text{w. p. } \frac{1}{2} \end{cases} \]

\[c_2 = \epsilon \]

Observation:

§ If we see a high value from box 1, there is no need to open box 2.

§ No matter what value we see from box 2, we still want to open box 1.
PANDORA’S BOX: EXAMPLE

Box 1

\[v_1 = \begin{cases}
\frac{1}{\epsilon} \text{ w. p. } \epsilon \\
0 \text{ w. p. } 1 - \epsilon
\end{cases} \]

\[c_1 = 1/2 \]

Box 2

\[v_2 = \begin{cases}
1 \text{ w. p. } \frac{1}{2} \\
0 \text{ w. p. } \frac{1}{2}
\end{cases} \]

\[c_2 = \epsilon \]

Optimal algorithm: open box 1 first, then open box 2 only when the value of box 1 is 0.
PANDORA’S BOX: EXAMPLE

\[
\begin{align*}
 v_1 &= \begin{cases}
 \frac{1}{\epsilon} & \text{w. p. } \epsilon \\
 0 & \text{w. p. } 1 - \epsilon
 \end{cases} \\
 c_1 &= 1/2
\end{align*}
\]

\[
\begin{align*}
 v_2 &= \begin{cases}
 1 & \text{w. p. } \frac{1}{2} \\
 0 & \text{w. p. } \frac{1}{2}
 \end{cases} \\
 c_2 &= \epsilon
\end{align*}
\]

Optimal algorithm: open box 1 first, then open box 2 only when the value of box 1 is 0

Observation:
- If we see a high value from box 1, there is no need to open box 2
Pandora’s Box: Example

\[
v_1 = \begin{cases}
\frac{1}{\epsilon} & \text{w. p. } \epsilon \\
0 & \text{w. p. } 1 - \epsilon
\end{cases}
\]

\[v_2 = \begin{cases}
1 & \text{w. p. } \frac{1}{2} \\
0 & \text{w. p. } \frac{1}{2}
\end{cases}
\]

\[c_1 = \frac{1}{2}\]

\[c_2 = \epsilon\]

Optimal algorithm: open box 1 first, then open box 2 only when the value of box 1 is 0

Observation:
- If we see a high value from box 1, there is no need to open box 2
- No matter what value we see from box 2, we still want to open box 1
PANDORA’S BOX: WHEN IS IT WORTH OPENING THE BOX

Maximum value seen so far: \(a \)

Value: \(v_i \sim D_i \)
Cost: \(c_i \)

We will also call this **outside option**
Pandora’s Box: When Is It Worth Opening The Box

Maximum value seen so far: \(a\)

We will also call this **outside option**

Observation: given the outside option \(a\), we should open box \(i\) only when the expected marginal increase in value exceeds the cost.
PANDORA’S BOX: WHEN IS IT WORTH OPENING THE BOX

Maximum value seen so far: a

We will also call this **outside option**

Observation: given the outside option a, we should open box i only when *the expected marginal increase in value exceeds the cost*.

If we don’t open the box: value = a

 cost = 0
PANDORA’S BOX: WHEN IS IT WORTH OPENING THE BOX

Maximum value seen so far: a

We will also call this **outside option**

Observation: given the outside option a, we should open box i only when the expected marginal increase in value exceeds the cost.

If we don’t open the box: value $= a$
 cost $= 0$

If we open the box: value $= \max(a, v_i)$
 cost $= c_i$
PANDORA’S BOX: WHEN IS IT WORTH OPENING THE BOX

Maximum value seen so far: \(a \)

Value: \(v_i \sim D_i \)

Cost: \(c_i \)

We will also call this outside option

Observation: given the outside option \(a \), we should open box \(i \) only when \(\text{the expected marginal increase in value exceeds the cost} \).

If we don’t open the box: value = \(a \)
 cost = 0

If we open the box: value = \(\max(a, v_i) \)
 cost = \(c_i \)

Box \(i \) is worth opening only when
\[
E[\max(v_i, a)] - a > c_i
\]
\[
\Leftrightarrow E[\max(v_i - a, 0)] = E[(v_i - a)^+] > c_i
\]
PANDORA’S BOX: WHEN IS IT WORTH OPENING THE BOX

Maximum value seen so far: \(a\)
Value: \(v_i \sim D_i\)
Cost: \(c_i\)

We will also call this **outside option**

Observation: given the outside option \(a\), we should open box \(i\) only when the expected marginal increase in value exceeds the cost.

If we don’t open the box: \(\text{value} = a\)
\(\text{cost} = 0\)

If we open the box: \(\text{value} = \max(a, v_i)\)
\(\text{cost} = c_i\)

Box \(i\) is worth opening only when \(E[\max(v_i, a)] - a > c_i\)
\(\Leftrightarrow E[\max(v_i - a, 0)] = E[(v_i - a)^+] > c_i\)

We will call \(\sigma_i\) such that \(E[(v_i - \sigma_i)^+] = c_i\) the **strike price**
PANDORA’S BOX: OPTIMAL POLICY [WEITZ79]

Value: $v_i \sim D_i$
Cost: c_i
Strike price: σ_i such that $E[(v_i - \sigma_i)^+] = c_i$
PANDORA’S BOX: OPTIMAL POLICY [WEITZ79]

Value: $v_i \sim D_i$

Cost: c_i

Strike price: $\sigma_i := E[(v_i - \sigma_i)^+] = c_i$
PANDORA’S BOX: OPTIMAL POLICY [WEITZ79]

Reorder in decreasing value of strike price σ: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$

Value: $v_i \sim D_i$
Cost: c_i
Strike price: $\sigma_i := E[(v_i - \sigma_i)^+] = c_i$
PANDORA’S BOX: OPTIMAL POLICY [WEITZ79]

Reorder in decreasing value of strike price $\sigma: \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$

Value: $v_i \sim D_i$
Cost: c_i
Strike price: $\sigma_i := E[(v_i - \sigma_i)^+] = c_i$

Agent opens the boxes in sequential order until position k where $\max_{i<k} v_i \geq \sigma_k$, in which case the agents stops and returns the maximum value they have seen so far.
PANDORA’S BOX: IS INSPECTION NECESSARY?
PANDORA’S BOX: IS INSPECTION NECESSARY?

Super busy person who needs a car the next day:
PANDORA’S BOX: IS INSPECTION NECESSARY?

Super busy person who needs a car the next day:

What about just … wing it?
PANDORA’S BOX: IS INSPECTION NECESSARY?
PANDORA’S BOX: IS INSPECTION NECESSARY?

International student: campus visits are too costly and time consuming
PANDORA’S BOX: IS INSPECTION NECESSARY?

International student: campus visits are too costly and time consuming

It’s a great school, let’s just go!
GIVING THE AGENT THE FREEDOM OF CHOICE
GIVING THE AGENT THE FREEDOM OF CHOICE

- **[GMS08]** Information Acquisition and Exploitation in Multichannel Wireless Networks.
GIVING THE AGENT THE FREEDOM OF CHOICE

- [GMS08] Information Acquisition and Exploitation in Multichannel Wireless Networks.
- [CL09] Optimal channel probing and transmission scheduling for opportunistic spectrum access.
GIVING THE AGENT THE FREEDOM OF CHOICE

- [GMS08] Information Acquisition and Exploitation in Multichannel Wireless Networks.
- [CL09] Optimal channel probing and transmission scheduling for opportunistic spectrum access.
- [AKLS17] Stochastic selection problems with testing.
GIVING THE AGENT THE FREEDOM OF CHOICE

- [GMS08] Information Acquisition and Exploitation in Multichannel Wireless Networks.
- [CL09] Optimal channel probing and transmission scheduling for opportunistic spectrum access.
- [AKLS17] Stochastic selection problems with testing.
- [Dov18] Whether or not to open Pandora’s box.
GIVING THE AGENT THE FREEDOM OF CHOICE

- [GMS08] Information Acquisition and Exploitation in Multichannel Wireless Networks.
- [CL09] Optimal channel probing and transmission scheduling for opportunistic spectrum access.
- [AKLS17] Stochastic selection problems with testing.
- [Dov18] Whether or not to open Pandora’s box.

PANDORA’S BOX PROBLEM WITH NON-OBLIGATORY INSPECTION
PANDORA’S BOX WITH NON-OBLIGATORY INSPECTION (PNOI)

(Introduced independently by GMS08, CL09, AKLS17, Dov18)

\[
\begin{array}{cccc}
1 & \ldots & i & i+1 & \ldots & n \\
\end{array}
\]

Value: \(v_i \sim D_i \)

Cost: \(c_i \)

The agent can inspect boxes in any order they like, and their goal is to maximize their Expected Utility = \(E[\text{Value of selected box} - \text{sum of inspection costs}] \)
PANDORA’S BOX WITH NON-OBLIGATORY INSPECTION (PNOI)

(Introduced independently by GMS08, CL09, AKLS17, Dov18)

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = \(E[\text{Value of selected box} - \text{sum of inspection costs}] \)

The agent can either inspect a box, or claim the box closed without inspection
PNOI: WHAT IS DIFFERENT

- Weitzman’s policy is no longer optimal
WEITZMAN’S POLICY IS NOT OPTIMAL

\[v_1 = \begin{cases} \frac{1}{\epsilon} \text{ w. p. } \epsilon \\ 0 \text{ w. p. } 1 - \epsilon \end{cases} \]

\[c_1 = 1/2 \]

\[v_2 = \begin{cases} 1 \text{ w. p. } \frac{1}{2} \\ 0 \text{ w. p. } \frac{1}{2} \end{cases} \]

\[c_2 = \epsilon \]
WEITZMAN'S POLICY IS NOT OPTIMAL

Weitzman's policy: open box 1 first, then open box 2 only when the value of box 1 is 0
WEITZMAN’S POLICY IS NOT OPTIMAL

\[
\begin{align*}
\text{Box 1} & : & v_1 &= \begin{cases}
\frac{1}{\epsilon} \text{ w. p. } \epsilon \\
0 \text{ w. p. } 1 - \epsilon
\end{cases} \\
\text{Box 2} & : & v_2 &= \begin{cases}
1 \text{ w. p. } \frac{1}{2} \\
0 \text{ w. p. } \frac{1}{2}
\end{cases}
\end{align*}
\]

\[c_1 = 1/2\]
\[c_2 = \epsilon\]

Weitzman’s policy: open box 1 first, then open box 2 only when the value of box 1 is 0

Optimal policy in non-obligatory inspection: open box 2 first,
\[v_2 = 0 \rightarrow \text{claim box 1 closed}\]
\[v_2 = 1 \rightarrow \text{open box 1}\]
WEITZMAN’S POLICY IS NOT OPTIMAL

\[v_1 = \begin{cases} \frac{1}{\epsilon} \text{ w. p. } \epsilon \\ 0 \text{ w. p. } 1 - \epsilon \end{cases} \]

\[v_2 = \begin{cases} 1 \text{ w. p. } \frac{1}{2} \\ 0 \text{ w. p. } \frac{1}{2} \end{cases} \]

\[c_1 = \frac{1}{2} \]

\[c_2 = \epsilon \]

Weitzman's policy: open box 1 first, then open box 2 only when the value of box 1 is 0

Agent Utility = \(1 - \frac{3\epsilon}{2} + \epsilon^2\)

Optimal policy in non-obligatory inspection: open box 2 first,

Agent Utility = \(\frac{5}{4} - \frac{3\epsilon}{2}\)

\(v_2 = 0 \rightarrow \text{claim box 1 closed}\)

\(v_2 = 1 \rightarrow \text{open box 1}\)
PNOI: WHAT IS DIFFERENT

- Weitzman’s policy is no longer optimal
- Adaptivity is required in the optimal policy
ADAPTIVITY IS REQUIRED

\[v_1 = \begin{cases} \frac{1}{\epsilon} \text{ w.p. } \epsilon \\ 0 \text{ w.p. } 1 - \epsilon \end{cases} \quad v_2 = \begin{cases} 1 \text{ w.p. } \frac{1}{2} \\ 0 \text{ w.p. } \frac{1}{2} \end{cases} \quad v_3 = \begin{cases} \frac{1}{\epsilon^2} \text{ w.p. } \epsilon^2 \\ 1 \text{ w.p. } \epsilon \\ 0 \text{ w.r.p} \end{cases} \]

\[c_1 = \frac{1}{2} \quad c_2 = \epsilon \quad c_3 = \frac{1}{2} \]

Optimal policy in non-obligatory inspection: open box 3 first,

\[v_3 = \frac{1}{\epsilon^2} \rightarrow \text{ stop} \]
\[v_3 = 1 \rightarrow \text{ open box 1 first} \]
\[v_3 = 0 \rightarrow \text{ open box 2 first} \]
PNOI: WHAT IS DIFFERENT

- Weitzman’s policy is no longer optimal
- Adaptivity is required in the optimal policy
- [FLL22] NP-Hardness

Theorem [FLL Arxiv Preprint 22*]: Finding the optimal policy for the pandora box with non-obligatory inspection problem is NP-hard.

An updated version of Fu Li and Liu is accepted to STOC 2023 together with our paper.
Theorem [GMS 08]:
There exists a polynomial time policy which 0.8 approximates the optimal policy.
Theorem [GMS 08]:
There exists a polynomial time policy which 0.8 approximates the optimal policy.

Non-adaptive order policy [BK19, GMS08]:
PNOI: CAN WE SAY ANYTHING ABOUT THE OPTIMAL POLICY?
PNOI: CAN WE SAY ANYTHING ABOUT THE OPTIMAL POLICY?

Related NP-Hard problem with a structurally interesting optimal policy:

Theorem [ASZ20]:
1) Finding the optimal policy for the free order prophet inequality problem is NP-hard.
2) The optimal policy is non-adaptive.
Related NP-Hard problem with a structurally interesting optimal policy:

Theorem [ASZ20]:

1) Finding the optimal policy for the free order prophet inequality problem is NP-hard.

2) The optimal policy is **non-adaptive**.

We have just shown that for our problem adaptivity is required...
PNOI: CAN WE SAY ANYTHING ABOUT THE OPTIMAL POLICY?

Related NP-Hard problem with a structurally interesting optimal policy:

Theorem [ASZ20]:
1) Finding the optimal policy for the free order prophet inequality problem is NP-hard.
2) The optimal policy is non-adaptive.

We have just shown that for our problem adaptivity is required…

Main Result 1*: the optimal policy for PNOI consists of two phases, where in each phase, the order of visiting boxes is pre-determined and nonadaptive.

*Also proven in an updated version of Fu Li and Liu (to appear in STOC 2023 jointly with our paper).
PNOI: STRUCTURE OF THE OPTIMAL POLICY
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Definition: A backup box in a policy is a box that the policy sometimes claim closed without inspection.
PNOI: Structure of the Optimal Policy

Definition: A **backup** box in a policy is a box that the policy sometimes claim closed without inspection.

\[
\begin{align*}
\text{Box 1:} & \quad v_1 = \begin{cases}
\frac{1}{\epsilon} \text{ w. p. } \epsilon \\
0 \text{ w. p. } 1 - \epsilon
\end{cases} \\
\text{Box 2:} & \quad v_2 = \begin{cases}
1 \text{ w. p. } \frac{1}{2} \\
0 \text{ w. p. } \frac{1}{2}
\end{cases}
\end{align*}
\]

\[c_1 = \frac{1}{2}, \quad c_2 = \epsilon\]

Optimal policy in non-obligatory inspection: open box 2 first,
\[v_2 = 0 \rightarrow \text{claim box 1 closed}\]
\[v_2 = 1 \rightarrow \text{open box 1}\]
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Definition: A backup box in a policy is a box that the policy sometimes claim closed without inspection.

$$v_1 = \begin{cases}
\frac{1}{\epsilon} \text{ w. p. } \epsilon \\
0 \text{ w. p. } 1 - \epsilon
\end{cases}$$

$$v_2 = \begin{cases}
1 \text{ w. p. } \frac{1}{2} \\
0 \text{ w. p. } \frac{1}{2}
\end{cases}$$

Backup box

$$c_1 = \frac{1}{2}$$

Not a backup box

$$c_2 = \epsilon$$

Optimal policy in non-obligatory inspection: open box 2 first,

- $v_2 = 0 \rightarrow$ claim box 1 closed
- $v_2 = 1 \rightarrow$ open box 1
There exists an optimal policy for PNOI that has \textit{at most one} back up box.
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Structural Theorem [GMS08]

There exists an optimal policy for PNOI that has *at most one* backup box.

Step one: select a backup box (if any)

```
  1       ...       i       i+1       i+2       i+3
```
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Structural Theorem [GMS08]
There exists an optimal policy for PNOI that has \textit{at most one} backup box.

Step one: select a backup box (if any)

\begin{itemize}
 \item 1
 \item \ldots
 \item i
 \item i+1
 \item i+2
 \item i+3
\end{itemize}

Step two: find optimal policy given that box i is the unique backup box
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Structural Theorem [GMS08]
There exists an optimal policy for PNOI that has \textit{at most one} backup box.

Step one: select a backup box (if any)

\[
\begin{array}{cccc}
1 & \ldots & i & i+1 & i+2 & i+3
\end{array}
\]

Step two: find optimal policy given that box \(i \) is the unique backup box

\textbf{Note:} even after fixing the backup box, an adaptive policy could still have \textit{exponential} number of branches, we are still not sure that PNOI is in \textit{NP}
Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Policy selection:

Step one: select a back up box i^* (or choose no backup box)
Step two: fix an initial order of the boxes (i_1, \ldots, i_k, i^*) and associated thresholds (τ_1, \ldots, τ_k)
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order

\[v_1 < \tau_1 \]
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order

\[
\begin{align*}
\tau_1 &< i_1 < \tau_1 \\
v_1 &< \tau_1 \\
\tau_2 &< i_2 < \tau_2 \\
v_2 &< \tau_2 \\
\ldots & \\
\tau_k &< i_k < \tau_k \\
v_k &< \tau_k \\
i^* &
\end{align*}
\]

If we reach the end of the order, claim the backup box closed without inspection.
Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order

If we see a value above threshold, the policy enters phase two
Main Result 1: There exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: While all seen values are below the threshold, keep opening boxes in initial order.

Phase two: Once \(v_i > \tau_i \), run Weitzman's policy on remaining boxes with outside option \(v_i \).
Algorithm 1 Two-Phase Policy(InitialOrder=i_1, \cdots, i_k, i^*, Thresholds=τ_1, \cdots, τ_k)

1: for $j = 1, \cdots, k$ do
2: \hspace{1em} Let $\mathcal{U}_j = \mathcal{M} \setminus \{i_1, \cdots, i_j\}$.
3: \hspace{1em} Open box i_j, observe value v_{ij} from the box.
4: \hspace{1em} if $v_{ij} > \tau_j$ then
5: \hspace{2em} Run Weitzman’s policy on remaining boxes from state (\mathcal{U}_j, v_{ij}).
6: \hspace{1em} return
7: \hspace{1em} end if
8: end for
9: Claim box i^* closed.
PNOI: STRUCTURE OF THE OPTIMAL POLICY

Algorithm 1 Two-Phase Policy(InitialOrder=i_1, \cdots, i_k, i^*, Thresholds=τ_1, \cdots, τ_k)

1. for $j = 1, \cdots, k$ do
2. Let $\mathcal{U}_j = \mathcal{M} \setminus \{i_1, \cdots, i_j\}$.
3. Open box i_j, observe value v_{i_j} from the box.
4. if $v_{i_j} > \tau_j$ then
5. Run Weitzman’s policy on remaining boxes from state (\mathcal{U}_j, v_{i_j}).
6. return
7. end if
8. end for
9. Claim box i^* closed.

Corollary: Pandora’s box problem with non-obligatory inspection is in NP.
PROOF SKETCH OF OPTIMALITY
PROOF SKETCH OF OPTIMALITY

- Consider an optimal policy that uses at most one backup box.
PROOF SKETCH OF OPTIMALITY

- Consider an optimal policy that uses at most one backup box.
- If the policy does not use backup box, then Weitzman policy is the optimal policy.
Proof Sketch of Optimality

- Consider an optimal policy that uses at most one backup box.
- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be i^*.
Consider an optimal policy that uses at most one backup box.

- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be \(i^* \).

Proof Sketch of Optimality

- Box \(j \) connected to box \(i^* \) with probability greater than 0.
PROOF SKETCH OF OPTIMALITY

- Consider an optimal policy that uses at most one backup box.
- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be i^*.

If after opening box j, we still may claim backup box closed with some probability, then:
- Either we see a value above v_j in the future.
- Or we claim the box i^* closed.
Consider an optimal policy that uses at most one backup box.

- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be i^*.

If after opening box j, we still may claim backup box closed with some probability, then:

- Either we see a value above v_j in the future.
- Or we claim the box i^* closed.

The value of v_j is irrelevant to the final value we select, can pretend $v_j = 0$.
Consider an optimal policy that uses at most one backup box.

- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be i^*.

Proof Sketch of Optimality

- Consider an optimal policy that uses at most one backup box.
- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be i^*.
Consider an optimal policy that uses at most one backup box.

- If the policy does not use backup box, then Weitzman policy is the optimal policy
- If the policy uses backup box, let this box be i^*

Let τ_j be the maximum value of box j where we still sometimes claim backup box closed
PROOF SKETCH OF OPTIMALITY

Consider an optimal policy that uses at most one backup box.

- If the policy does not use backup box, then Weitzman policy is the optimal policy.
- If the policy uses backup box, let this box be i^*.

Let τ_j be the maximum value of box j where we still sometimes claim backup box closed.

There is an optimal policy where:

- For $v_j \leq \tau_j$, we always take the same future actions.
- For $v_j \gt \tau_j$, backup box is NEVER claimed closed, use Weitzman policy for future boxes.
PNOI: POLYNOMIAL TIME APPROXIMATION SCHEME

Main result 2*: There exists a PTAS for the Pandora’s box with nonobligatory inspection problem.

- Stochastic dynamic program formulated in [FLX18] has a PTAS
- We restrict the search space to finding approximately optimal two-phase policy
- We can reduce our problem to stochastic dynamic program in [FLX18]

*Also proven in an updated version of Fu Li and Liu (to appear in STOC 2023 jointly with our paper).
\[v_0 = 0 \]

Take an action \(a_0 \)

Get reward \(g(v_0, a_0) \)

\[v_1 = f(v_0, a_0) = 1 \]

\[v_n = f(v_{n-1}, a_{n-1}) = 5 \]

Final reward: \(h(v_n) \)

Goal: maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n) \)
STOCHASTIC DYNAMIC PROGRAM [FLX18]

\[v_0 = 0 \]

take an action \(a_0 \)

\[v_1 = f(v_0, a_0) \]
\[= 1 \]

get reward \(g(v_0, a_0) \)

...

\[v_n = f(v_{n-1}, a_{n-1}) \]
\[= 5 \]

Final reward: \(h(v_n) \)

Goal: maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n) \)

[FLX18] There is a PTAS for any stochastic dynamic program such that

- \(v_i \) increase as time step \(i \) increases
- Value and action space are of reasonable size (related to \(\epsilon \))
- Immediate reward \(g(v_i, a_i) \) has expectation \(\geq 0 \)
- Final reward \(h(v_n) \) \(\geq 0 \)
REDUCING TO STOCHASTIC DYNAMIC PROGRAM

\[v_0 = 0 \]

- take an action \(a_0 \)
- get reward \(g(v_0, a_0) \)

\[v_1 = f(v_0, a_0) = 1 \]

- \(\cdots \)

\[v_n = f(v_{n-1}, a_{n-1}) = 5 \]

Final reward: \(h(v_n) \)

Goal: maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n) \)
Optimal policy can be described as $(i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k)$.
REducing to Stochastic Dynamic Program

\[v_0 = 0 \]
\[v_1 = f(v_0, a_0) = 1 \]
\[v_n = f(v_{n-1}, a_{n-1}) = 5 \]

Take an action \(a_0 \) and get reward \(g(v_0, a_0) \).

Goal: Maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n) \)

Optimal policy can be described as \((i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k) \)

- **Actions:** (phase one) open a box \(i \) with threshold \(\tau_i \)
- (phase two) open a box \(i \) with threshold \(0 \)
REDUCTING TO STOCHASTIC DYNAMIC PROGRAM

\[v_0 = 0 \]
\[v_1 = f(v_0, a_0) = 1 \]
\[v_n = f(v_{n-1}, a_{n-1}) = 5 \]

- **Actions:** (phase one) open a box \(i \) with threshold \(\tau_i \)
- (phase two) open a box \(i \) with threshold 0
- **Value:** the best value seen so far (0 if value is below the threshold)

Goal: maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n) \)

Optimal policy can be described as \((i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k)\)
REDDUCING TO STOCHASTIC DYNAMIC PROGRAM

\[v_0 = 0 \]
\[v_1 = f(v_0, a_0) \]
\[v_n = f(v_{n-1}, a_{n-1}) \]

- take an action \(a_0 \)
- get reward \(g(v_0, a_0) \)

\[v_1 = f(v_0, a_0) \]
\[= 1 \]

... \[v_n = f(v_{n-1}, a_{n-1}) \]
\[= 5 \]

Final reward: \(h(v_n) \)

Goal: maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n) \)

Optimal policy can be described as \((i_1, \cdots, i_k, i^*, \tau_1, \cdots, \tau_k) \)

- **Actions**: (phase one) open a box \(i \) with threshold \(\tau_i \)
- (phase two) open a box \(i \) with threshold \(0 \)
- **Value**: the best value seen so far (0 if value is below the threshold)
- **Immediate Reward**: \(v_i - v_{\{i-1\}} - c_i \)
REDUCING TO STOCHASTIC DYNAMIC PROGRAM

\[v_0 = 0 \]
\[v_1 = f(v_0, a_0) = 1 \]
\[v_n = f(v_{n-1}, a_{n-1}) = 5 \]

Optimal policy can be described as \((i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k)\)

- **Actions**: (phase one) open a box \(i\) with threshold \(\tau_i\)
 - (phase two) open a box \(i\) with threshold 0
- **Value**: the best value seen so far (0 if value is below the threshold)
- **Immediate Reward**: \(v_i - v_{i-1} - c_i\)
- **Final reward**: (if we never reached phase two) \(E[v_{i^*}]\)

Goal: maximize expected total reward \(\sum_{i=0}^{n-1} g(v_i, a_i) + h(v_n)\)
REDDUCING TO STOCHASTIC DYNAMIC PROGRAM

Optimal policy can be described as \((i_1, \cdots, i_k, i^*, \tau_1, \cdots, \tau_k)\)

- **Actions:** (phase one) open a box \(i\) with threshold \(\tau_i\)
- (phase two) open a box \(i\) with threshold 0
- **Value:** the best value seen so far (0 if value is below the threshold)
- **Immediate Reward:** \(v_i - v_{i-1} - c_i\)
- **Final reward:** (if we never reached phase two) \(E[v_{i^*}]\)

[FLX18] There is a PTAS for any stochastic dynamic program such that

- \(v_i\) increase as time step \(i\) increases
- Value and action space are of reasonable size (related to \(\epsilon\))
- Immediate reward \(g(v_i, a_i)\) has expectation \(\geq 0\)
- Final reward \(h(v_n) \geq 0\)
There is a PTAS for any stochastic dynamic program such that

- **Actions**: (phase one) open a box \(i \) with threshold \(\tau_i \)
- (phase two) open a box \(i \) with threshold 0
- **Value**: the best value seen so far (0 if value is below the threshold)
- **Immediate Reward**: \(v_i - v_{i-1} - c_i \)
- **Final reward**: (if we never reached phase two) \(E[v_i^*] \)

[FLX18] There is a PTAS for any stochastic dynamic program such that

- \(v_i \) increase as time step \(i \) increases
- Value and action space are of reasonable size (related to \(\epsilon \))
- Immediate reward \(g(v_i, a_i) \) has expectation \(\geq 0 \)
- Final reward \(h(v_n) \geq 0 \)
Optimal policy can be described as \((i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k)\)

- **Actions**: (phase one) open a box \(i\) with threshold \(\tau_i\)
-
- (phase two) open a box \(i\) with threshold 0
- **Value**: the best value seen so far (0 if value is below the threshold)
- **Immediate Reward**: \(v_i - v_{i-1} - c_i\)
- **Final reward**: (if we never reached phase two) \(E[v_{i^*}]\)

[FLX18] There is a PTAS for any stochastic dynamic program such that

- \(v_i\) increase as time step \(i\) increases ✓
- Value and action space are of reasonable size (related to \(\epsilon\)) ✗
- Immediate reward \(g(v_i, a_i)\) has expectation \(\geq 0\)
- Final reward \(h(v_n) \geq 0\)
Optimal policy can be described as \((i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k)\)

- **Actions:**
 - (phase one) open a box \(i\) with threshold \(\tau_i\)
 - (phase two) open a box \(i\) with threshold 0

- **Value:** the best value seen so far (0 if value is below the threshold)

- **Immediate Reward:** \(v_i - v_{i-1} - c_i\)

- **Final reward:** (if we never reached phase two) \(E[v_i^*]\)

[FLX18] There is a PTAS for any stochastic dynamic program such that

- \(v_i\) increase as time step \(i\) increases
- Value and action space are of reasonable size (related to \(\epsilon\))
- Immediate reward \(g(v_i, a_i)\) has expectation \(\geq 0\)
- Final reward \(h(v_n) \geq 0\)
There is a PTAS for any stochastic dynamic program such that

- Value and action space are of reasonable size (related to ϵ)
- Immediate reward $g(v_i, a_i)$ has expectation ≥ 0
- Final reward $h(v_n) \geq 0$

Optimal policy can be described as $(i_1, \ldots, i_k, i^*, \tau_1, \ldots, \tau_k)$

- **Actions:** (phase one) open a box i with threshold τ_i
- (phase two) open a box i with threshold 0
- **Value:** the best value seen so far (0 if value is below the threshold)
- **Immediate Reward:** $v_i - v_{\{i-1\}} - c_i$
- **Final reward:** (if we never reached phase two) $E[v_{i^*}]$
Challenge 1: negative terms in reward function reflecting costs

Solution: Reduce finding the optimal two-phase policy to an equivalent problem without cost.

Challenge 2: value space is too large to discretize in reasonable increment.

Solution:
1) For any fixed initial ordering of boxes, we can discretize the values to a small set.
2) Only \(n \) possible "small" sets of discretization, can try all of them.

REDUCING TO STOCHASTIC DYNAMIC PROGRAM
Challenge 1: negative terms in reward function reflecting costs

Solution: Reduce finding the optimal two-phase policy to an equivalent problem without cost
Challenge 1: negative terms in reward function reflecting costs

Solution: Reduce finding the optimal two-phase policy to an equivalent problem without cost

Challenge 2: value space is too large to discretize in reasonable increment

Solution:
1) For any fixed initial ordering of boxes, we can discretize the values to a small set
2) Only \(n^{\text{poly}(\frac{1}{\epsilon})} \) possible “small” sets of discretization, can try all of them
We show a simple two-phased structure of the optimal policy and provide a PTAS for the Pandora's box with nonobligatory inspection problem.

Future directions:
§ Does there exists a FPTAS for the Pandora's box with nonobligatory inspection problem?
§ What happens when the cost is not additive, or if we allow selection of multiple boxes subject to feasibility constraints?
§ Could we model the fact that we could often inspect an option in different ways (e.g., online research, in person campus visit)?
§ What would be the effect of risk aversion on the Pandora's box problem?

CONCLUSION
We show a simple two-phased structure of the optimal policy and provide a PTAS for the Pandora’s box with nonobligatory inspection problem.
We show a simple two-phased structure of the optimal policy and provide a PTAS for the Pandora’s box with nonobligatory inspection problem.

Future directions:

- Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem?
CONCLUSION

We show a simple two-phased structure of the optimal policy and provide a PTAS for the Pandora’s box with nonobligatory inspection problem.

Future directions:

- Does there exist a FPTAS for the Pandora’s box with nonobligatory inspection problem?
- What happens when the cost is not additive, or if we allow selection of multiple boxes subject to feasibility constraints?
CONCLUSION

We show a simple two-phased structure of the optimal policy and provide a PTAS for the Pandora’s box with nonobligatory inspection problem.

Future directions:

- Does there exist a FPTAS for the Pandora’s box with nonobligatory inspection problem?
- What happens when the cost is not additive, or if we allow selection of multiple boxes subject to feasibility constraints?
- Could we model the fact that we could often inspect an option in different ways (e.g. online research, in person campus visit)?
CONCLUSION

We show a simple two-phased structure of the optimal policy and provide a PTAS for the Pandora’s box with nonobligatory inspection problem.

Future directions:

- Does there exist a FPTAS for the Pandora’s box with nonobligatory inspection problem?
- What happens when the cost is not additive, or if we allow selection of multiple boxes subject to feasibility constraints?
- Could we model the fact that we could often inspect an option in different ways (e.g. online research, in person campus visit)?
- What would be the effect of risk aversion on the Pandora’s box problem?
THANK YOU FOR LISTENING!