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WHY WOULD ANYONE BUY AN
IDENTICAL PRODUCT AT A
HIGHER PRICE?
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Value: v; ~ D;
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Cost: ¢;

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[value of selected box — sum of inspection costs]
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value =
cost = 1

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[value of selected box — sum of inspection costs]

The agent must inspect a box before selecting it
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cost = 1 cost = 2

The agent can inspect boxes in any order they like, and their goal is to maximize their
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value = 2 value = value =
cost=1 cost = 2 cost = 2

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[value of selected box — sum of inspection costs]

The agent must inspect a box before selecting it
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PANDORA’S BOX PROBLEM

(Introduced by Weitzman79)

o EHE L

value = value = value =
cost = 1 cost = 2 cost = 2

Utility = max(value) — sum(cost) = max(2, 8,8) — (1 + 2 + 2) = 3

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[value of selected box — sum of inspection costs]

The agent must inspect a box before selecting it

e
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= If we see a high value from box 1, there is no need to open box 2
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PANDORA’S BOX: EXAMPLE

1 1 w.p. %
- W.p. €
Vv, = Uy, =
0 wp 1—¢ 0 w.p. %
¢t =1/2 Cp = €

Optimal algorithm: open box | first, then open box ” only when the value of box 1 is 0

Observation:
= If we see a high value from box 1, there is no need to open box 2
* No matter what value we see from box 2, we still want to open box 1

e
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We will also call this outside option

Value: v; ~ D;

Cost: ¢;

Observation: given the outside option a, we should open box i1 only when
the expected marginal increase in value exceeds the cost.

If we don’t open the box: value = a If we open the box: value = max(a , v;)
cost =0 cost = ¢;

Box i is worth opening only when E|max(v;, a)| —a > ¢;
& E[max(v; — a,0)] = E[(v; — a)*] > ¢




PANDORA’S BOX: WHEN IS IT WORTH
OPENING THE BOX

Maximum value seen so far: a

\ J
|

We will also call this outside option

Value: v; ~ D;

Cost: ¢;

Observation: given the outside option a, we should open box i1 only when
the expected marginal increase in value exceeds the cost.

If we don’t open the box: value = a If we open the box: value = max(a , v;)
cost =0 cost = ¢;

Box i is worth opening only when E|max(v;, a)| —a > ¢;
& E[max(v; — a,0)] = E[(v; — a)*] > ¢

We will call 0; such that E[(v; — 0;)"| = ¢; the strike price
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D
Value: v; ~ D;
Cost

Strike price: g; := E[(v; — 0;)1] = ¢;




PBNDORA’S BOX OPTIMKL PQLICY |WEITZT9)]

- D- N

Strike pri = E[(v; —a)T] = ¢




PANDORR’S BOX: OPTIMAL POLICY [WEITZT9]

Reorder in decreasing value of strike price o:0;, = 0, = - = g,

Value: v; ~ D;

Cost: ¢;

Strike price: g; := E[(v; — 0;)1] = ¢;

Agent opens the boxes in sequential order until position k where max v; > O,
l
in which case the agents stops and returns the maximum value they have seen so far.

e
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PANDORA’S BOX: IS INSPECTION NECESSARY?

Super busy person who needs a car the next day:

What about just ... wing it?
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PANDORA’S BOX: IS INSPECTION NECESSARY?

International student: campus visits are too costly and time consuming

A= ‘i‘.“}sii" = ‘».f )\5 - ? f\ :

5.5 6.85-6.5 5. S [t's a great school, let’s just go!

Ak

©
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= [CL09] Optimal channel probing and transmission scheduling for opportunistic
spectrum access.

= [AKLS17] Stochastic selection problems with testing.

= [Dov18] Whether or not to open Pandora’s box.

PANDORA’S BOX PROBLEM WITH NON-OBLIGATORY
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PANDORR’S BOX WITH NON-OBLIGATORY
INSPECTION (PNOI)

(Introduced independently by GMS08, CL09, AKLS17, Dov18)

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[Value of selected box — sum of inspection costs]
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PANDORA’S BOX WITH NON-OBLIGATO!
INSPECTION (PNOI)

(Introduced independently by GMS08, CL09, AKLS17, Dov18)

N N N

The agent can inspect boxes in any order they like, and their goal is to maximize their
Expected Utility = E[Value of selected box — sum of inspection costs]

The agent can either inspect a box, or claim the box closed without inspection

e



PNOL: WHAT IS DIFFERENT

= Weitzman'’s policy is no longer optimal
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1 1 w.p. %
- W.p. €
Vg = Uy, =
0 wp 1—¢ 0 w.p. %
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Weitzman’s policy: open box 1 first, then open box 2 only when the value of box 1 is 0
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WEITZMAN’S POLICY IS NOT OPTIMAL

1 1 w.p. %
- W.p.€
Vv, = Uy, =

0 wp. 1—¢€
C1:1/2

0 w.p. ¥

C2:€

Weitzman’s policy: open box 1 first, then open box 2 only when the value of box 1 is 0

Optimal policy in non-obligatory inspection: open box 2 first,

v, = 0 - claim box | closed
v, =1 > openbox |

e



WEITZMAN’S POLICY IS NOT OPTIMAL

1 w.p. %

0 w.p. ¥
Cl == 1/2

0 wp. 1—¢€

C2:€

Weitzman’s policy: open box 1 first, then open box 2 only when the value of box 1 is 0
Agent Utility = 1 - 32—6 + €2

Optimal policy in non-obligatory inspection: open box 2 first

2e v, = 0 - claim box | closed
Agent Utility = ——7 v, =1 - open box 1

e



PNOL: WHAT IS DIFFERENT

= Weitzman'’s policy is no longer optimal
= Adaptivity is required in the optimal policy




ADAPTIVITY IS REQUIRED

1 2
1 1 w.p. % — W.p. €
— W.p. € €
€
v, = V2 = V3 = 1 w.p. €
0 w.p. 1—¢ 0 w.p. % 0 w.r.p

C1:1/2 Cr) = € C3:1/2

Optimal policy in non-obligatory inspection: open box 3 first,

v3 = 1/e? - stop
v3 = 1 - open box 1 first
v3 = 0 — open box ” first

®




PNOL: WHAT IS DIFFERENT

= Weitzman'’s policy is no longer optimal
= Adaptivity is required in the optimal policy
= [FLL22] NP-Hardness

Theorem [FLL Arxiv Preprint 22%]: Finding the optimal policy for the pandora box
with non- obligatory inspection problem is NP-hard.

*An updated version of Fu Li and Liu is accepted to STOC 2023 together with our paper.

e
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Theorem [GMS 08]:
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PNOL: APPROXIMATELY OPTIMAL

Theorem [GMS 08]:

There exists a polynomial time policy which 0.8 approximates the optimal policy.

Non-adaptive order policy [BK19, GMSO08]:

l : - '
1

Only select after inspection Only select after inspection

Only select without inspection
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2) The optimal policy is non-adaptive.
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PNOI: CAN WE SAY ANYTHING ABOUT THE
OPTIMAL POLICY?

Related NP-Hard problem with a structurally interesting optimal policy:

Theorem [ASZ20]:

1) Finding the optimal policy for the free order prophet inequality problem is NP-
hard.

2) The optimal policy is non-adaptive.

We have just shown that for our problem adaptivity is required...

Main Result 1*: the optimal policy for PNOI consists of two phases, where in each
phase, the order of visiting boxes is pre-determined and nonadaptive.

*Also proven in an updated version of Fu Li and Liu (to appear in STOC 2023 jointly with our papel@
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Definition: A backup box in a policy is a box that the policy sometimes claim closed

1 w.p. ¥

without inspection.
Cz =€

1 = 1/2

0 w.p 1—¢ 0 w.p. %

Optimal policy in non-obligatory inspection: open box 2 first,
v, = 0 - claim box 1 closed
v, =1 > openbox 1
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PNOL: STRUCTURE OF THE OPTIMAL POLICY

Definition: A backup box in a policy is a box that the policy sometimes claim closed
without inspection.

1 w.p %

1
- W.p. €
vl = vz =
backup box 0w.p 1—¢€ not a backup box 0 w.p. %

1 = 1/2 CZ =€

Optimal policy in non-obligatory inspection: open box 2 first,
v, = 0 - claim box 1 closed
v, =1 > openbox 1

®
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PNOL: STRUCTURE OF THE OPTIMAL POLICY

Structural Theorem [GIMS08]

There exists an optimal policy for PNOI that has at most one back up box.

Step two: find optimal policy given that box i is the unique backup box

Step one: select a backup box (if any)

Note: even after fixing the backup box, an adaptive policy could still have
exponential number of branches, we are still not sure that PNOI is in NP




PNOL: STRUCTURE OF THE OPTIMAL POLICY

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Policy selection:

Step one: select a back up box i* (or choose no backup box)

Step two: fix an initial order of the boxes (i, :*, ix, ") and associated thresholds (74, :*, Tx)

>
Tk
'l 'l 'l *
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Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order
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Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order

If we reach the end of the order, claim the backup box closed without inspection.
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Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order

(2 T
- - l*
L1 12 [ Ik L

If we see a value above threshold, the policy enters phase two




PNOL: STRUCTURE OF THE OPTIMAL POLICY

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

Two-phase Policy:

Phase one: while all seen values are below the threshold, keep opening boxes in initial order

. 1;2 Tk : . Other boxes not in the
l l l P
1 3 e k initial order

V1 < 71 (%) > %) |
Reorder in decreasing value of 6: 0y =2 05 = - = 0,

Phase two : Once v; > 1;, run Weitzman’s policy on remaining boxes with outside option v;

e



PNOL: STRUCTURE OF THE OPTIMAL POLICY

Algorithm 1 Two-Phase Policy(InitialOrder=iy, - - - , ix,i*, Thresholds=7y, - - - , 7%)
I: forj=1,---,kdo
s Let(LIj:M\{il,---,ij}.

3 Open box i ;, observe value Vi; from the box.

4 if Vi; > T; then

5: Run Weitzman’s policy on remaining boxes from state (U4, v;; ).
6 return

7 end if

8: end for

9: Claim box i* closed.




PNOL: STRUCTURE OF THE OPTIMAL POLICY

Algorithm 1 Two-Phase Policy(InitialOrder=iy, - - - ,ix,i", Thresholds=7y, - - - , 7%)
I: forj=1,---,kdo

2 Let(LI-:M\{il,---,ij}.

3 Open box i ;, observe value Vi, from the box.

4: if Vi; > T; then

5 Run Weitzman’s policy on remaining boxes from state (U4, v;; ).
6 return

7 end if

8: end for

9: Claim box i* closed.

Corollary: Pandora’s box problem with non-obligatory inspection is in NF.

®
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= Consider an optimal policy that uses at most one backup box.
= If the policy does not use backup box, then Weitzman policy is the optimal policy

= If the policy uses backup box, let this box be i*

- With >0 probability
NN N %y 3

If after opening box j, we still may claim backup box closed with some probability, then:
= Either we see a value above v; in the future

= Or we claim the box i*closed
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PROOF SKETCH OF OPTIMALITY

= Consider an optimal policy that uses at most one backup box.

= If the policy does not use backup box, then Weitzman policy is the optimal policy

= If the policy uses backup box, let this box be i*

- With >0 probability
NN N %y 3

If after opening box j, we still may claim backup box closed with some probability, then:
= Either we see a value above v; in the future

= Or we claim the box i*closed

The value of v; is irrelevant to the final value we select, can pretend v; = 0

e
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PROOF SKETCH OF OPTIMALITY

= Consider an optimal policy that uses at most one backup box.
= If the policy does not use backup box, then Weitzman policy is the optimal policy

= If the policy uses backup box, let this box be i*

- With >0 probability
NN N %y 3

Let 7; be the maximum value of box j where we still sometimes claim backup box closed
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PROOF SKETCH OF OPTIMALITY

= Consider an optimal policy that uses at most one backup box.

= If the policy does not use backup box, then Weitzman policy is the optimal policy

= If the policy uses backup box, let this box be i*

- With >0 probability

Let 7; be the maximum value of box j where we still sometimes claim backup box closed

There is an optimal policy where:
= For v; = 7;,we always take the same future actions

= For v; > 17;,backup box is NEVER claimed closed, use Weitzman policy for future boxes

e



PNOI: POLYNOMIAL TIME APPROXIMATION
SCHEME

Main result 2%*: There exists a PTAS for the Pandora’s box with nonobligatory
inspection problem.

= Stochastic dynamic program formulated in [FLX18] has a PTAS
= We restrict the search space to finding approximately optimal two-phase policy

= We can reduce our problem to stochastic dynamic program in [FLX18]

{

*Also proven in an updated version of Fu Li and Liu (to appear in STOC 2023 jointly with our pape@
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take an action a, \/

get reward g(v,, ay) Final reward: h(v,)

Goal: maximize expected total reward Y1~y g(v;, a;) + h(v,)

[FLX18] There is a PTAS for any stochastic dynamic program such that
= ; Increase as time step | increases

= Value and action space are of reasonable size (related to ¢)

= Immediate reward g (v;, a;) has expectation = 0

= Final reward h(v,,) = 0
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= Actions: (phase one) open a box i with threshold 7;
: (phase two) open a box i with threshold 0

= Value: the best value seen so far (0 if value is below the threshold)




REDUCING TO STOCHASTIC DYNAMIC PROGRAM

take an action a, U

get reward g(v,, ay) Final reward: h(v,)

Goal: maximize expected total reward Y1~y g(v;, a;) + h(vy,)

Optimal policy can be described as (i, -, iy, ", 71, ", Tx)

= Actions: (phase one) open a box i with threshold 7;

: (phase two) open a box i with threshold 0

= Value: the best value seen so far (0 if value is below the threshold)

= Immediate Reward: v, — v;_1)- ¢;
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get reward g(v,, ay) Final reward: h(v,)

Goal: maximize expected total reward Y1~y g(v;, a;) + h(vy,)

Optimal policy can be described as (i, -, iy, ", 71, ", Tx)
= Actions: (phase one) open a box i with threshold 7;

g (phase two) open a box i with threshold 0

Value: the best value seen so far (0 if value is below the threshold)

Immediate Reward: v; — v ¢
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REDUCING T0 STOCHASTIC DYNAMIC

PROGRAM

Optimal policy can be described as (i, -, iy, 1", 71, ", Tx)

Actions: (phase one) open a box i with threshold 7;

g (phase two) open a box i with threshold 0

Value: the best value seen so far (0 if value is below the threshold)

Immediate Reward: v; — v ¢

= Final reward: (if we never reached phase two) E|v;]

[FLX18] There is a PTAS for any stochastic dynamic program such that
= ; Increase as time step | increases

= Value and action space are of reasonable size (related to ¢)

= Immediate reward g (v;, a;) has expectation = 0

= Final reward h(v,,) = 0
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PROGRAM

Optimal policy can be described as (i, -, iy, 1", 71, ", Tx)

Actions: (phase one) open a box i with threshold 7;
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= Challenge 1: negative terms in reward function reflecting costs

= Solution: Reduce finding the optimal two-phase policy to an equivalent problem
without cost

= Challenge 2: value space is too large to discretize in reasonable increment
= Solution:

= 1) For any fixed initial ordering of boxes, we can discretize the values to a small set
1
= 2) Only ntPo ()} possible “small” sets of discretization, can try all of them
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CONCLUSION

We show a simple two-phased structure of the optimal policy and provide a PTAS for the
Pandora’s box with nonobligatory inspection problem.

Future directions:

= Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem?

= What happens when the cost is not additive, or if we allow selection of multiple boxes
subject to feasibility constraints?

= Could we model the fact that we could often inspect an option in different ways (e.g.
online research, in person campus visit)?

= What would be the effect of risk aversion on the Pandora’s box problem?







