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Value: 𝑣! ∼ 𝐷!
Cost: 𝑐!
Reservation value:	𝜎! such that E 𝑣! − 𝜎! " = 𝑐!

1 i i+1

…

Reorder in decreasing value of reservation value 𝜎: 𝜎! ≥ 𝜎" ≥ ⋯ ≥ 𝜎#

…

Agent opens the boxes in sequential order until position k where max
!#$

𝑣! ≥ 𝜎$,

in which case the agents stops and returns the maximum value they have seen so far. 

n
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Value: 𝑣! ∼ 𝐷!
Cost: 𝑐!

1 i i+1

…

The agent can inspect boxes in any order they like, and their goal is to maximize their  
Expected Utility = E[Value of selected box – sum of inspection costs]

The agent can either inspect a box, or claim the box closed without inspection

n

…

* The acronym "PNOI” is first used in an earlier version of Fu Li and Liu 2023 
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Box 1 Box 2

𝑣! =

1
𝜖
	 w. p. 	𝜖
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𝑣" =

1	 w. p. 	 ½

0	 w. p. 	 ½

𝑐! = 1/2 𝑐" = ϵ

Optimal policy in non-obligatory inspection:  open box 3 first,
                                           

Box 3
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𝑣& = 1/𝜖% →	 stop
𝑣& = 1 → open	box	1	;irst
𝑣& = 0 → open	box	2	;irst



§Weitzman’s policy is no longer optimal 

§Adaptivity is required in the optimal policy

§ [Fu Li and Liu 2022] NP-Hardness 

Theorem [Fu Li and Liu Arxiv Preprint 2022*]: Finding the optimal policy for the 
pandora box with non- obligatory inspection problem is NP-hard. 

*An updated version of Fu Li and Liu is accepted to STOC 2023 together with our paper. 





Theorem [Agrawal, Sethuraman and Zhang 2020]: 

1) Finding the optimal policy for the free order prophet inequality problem is NP-
hard. 

2) The optimal policy is non-adaptive. 

Related NP-Hard problem with a structurally interesting optimal policy:



Theorem [Agrawal, Sethuraman and Zhang 2020]: 

1) Finding the optimal policy for the free order prophet inequality problem is NP-
hard. 

2) The optimal policy is non-adaptive. 

Related NP-Hard problem with a structurally interesting optimal policy:

We have just shown that for our problem adaptivity is required… 



Theorem [Agrawal, Sethuraman and Zhang 2020]: 

1) Finding the optimal policy for the free order prophet inequality problem is NP-
hard. 

2) The optimal policy is non-adaptive. 

Main Result 1*: the optimal policy for PNOI consists of two phases, where in each 
phase, the order of visiting boxes is pre-determined and nonadaptive.

*Also proven in an updated version of Fu Li and Liu (accepted to STOC 2023 jointly with our paper). 

Related NP-Hard problem with a structurally interesting optimal policy:

We have just shown that for our problem adaptivity is required… 
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Optimal policy in non-obligatory inspection:  open box 2 first,                        
                                                                                   𝑣% = 0 →	claim box 1 closed
																																																																																															𝑣% = 1 →	open box 1

backup box not a backup box 
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Structural Theorem [Guha, Munagala and Sarkar 2008]

There exists an optimal policy for PNOI that has at most one back up box.  

1 i i+1 i+2 i+3

…

Step one: select a backup box (if any) 

Step two: find optimal policy given that box i is the unique backup box  

Note: even after fixing the backup box, an adaptive policy could still have 
exponential number of branches, we are still not sure that PNOI is in NP



Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

𝑖! 𝑖" 𝑖) 𝑖∗

…

Step one: select a back up box 𝑖∗ (or choose no backup box)

Step two: fix an initial order of the boxes 𝑖!, ⋯ , 𝑖) , 𝑖∗  and associated thresholds 𝜏!, ⋯ , 𝜏)

Policy selection: 

𝜏!
𝜏"

𝜏)



Phase one: while all seen values are below the threshold, keep opening boxes in initial order 

Two-phase Policy: 
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If we reach the end of the order, claim the backup box closed without inspection.  

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.
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Phase one: while all seen values are below the threshold, keep opening boxes in initial order 

Two-phase Policy: 

𝑖! 𝑖" 𝑖) 𝑖∗

…
𝜏"

𝑣! <	𝜏!

𝑣"

𝑣" >	𝜏"

If we see a value above threshold, the policy enters phase two

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.
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Phase one: while all seen values are below the threshold, keep opening boxes in initial order

Two-phase Policy: 

𝑖! 𝑖" 𝑖) 𝑖∗

…
𝜏"

𝑣! <	𝜏!

𝑣"

𝑣" >	𝜏"

Phase two : Once 𝑣+ >	𝜏+, run Weitzman’s policy on remaining boxes with outside option 𝑣+

Other boxes not in the 
initial order

Reorder in decreasing value of 𝜎: 𝜎! ≥ 𝜎" ≥ ⋯ ≥ 𝜎#

Main Result 1: there exists an optimal policy in the form of the following two-phase policy.

𝜏!
𝑣!

𝜏)





Corollary: Pandora’s box problem with non-obligatory inspection is in NP. 



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗

𝑖∗𝑗
With >0 probability



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗

𝑖∗𝑗

If after opening box j, we still may claim backup box closed with some probability, then:
§ Either we see a value above 𝑣( in the future 
§ Or we claim the box 𝑖∗closed

With >0 probability



§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy
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𝑖∗𝑗

If after opening box j, we still may claim backup box closed with some probability, then:
§ Either we see a value above 𝑣( in the future 
§ Or we claim the box 𝑖∗closed

The value of 𝑣( is irrelevant to the final value we select, can pretend 𝑣( = 	0	
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§ Consider an optimal policy that uses at most one backup box.

§ If the policy does not use backup box, then Weitzman policy is the optimal policy

§ If the policy uses backup box, let this box be 𝑖∗

𝑖∗𝑗

Let 𝜏( be the maximum value of box j where we still sometimes claim backup box closed 

There is an optimal policy where:
§ For 𝑣( ≤	𝜏(, we always take the same future actions 
§ For 𝑣( >	𝜏(, backup box is NEVER claimed closed, use Weitzman policy for future boxes 

With >0 probability



Our approach: 

§ Stochastic dynamic program formulated in [Fu Li and Xu 2018] has a PTAS

§ We restrict the search space to finding approximately optimal two-phase policy 

§ Then we reduce our problem to stochastic dynamic program in [Fu Li and Xu 2018] 

Main result 2*: There exists a PTAS for the Pandora’s box with nonobligatory 
inspection problem.

*Also proven in an updated version of Fu Li and Liu (accepted to STOC 2023 jointly with our paper). 
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[Fu Li and Xu 2018] There is a PTAS for any stochastic dynamic program such that 

§ 𝑣! increase as time step 𝑖 increases  
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§ Challenge 1: negative terms in reward function reflecting costs

§ Solution: Reduce finding the optimal two-phase policy to an equivalent problem without 
cost 

§ Challenge 2: value space is too large to discretize in reasonable increment 

§ Solution: 

§ 1) For any fixed initial ordering of boxes, we can discretize the values to a set of size 𝑝𝑜𝑙𝑦 -
.

§ 2) Only 𝑛 /012 "
# 	possible “small” sets of discretization, can try all of them
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We show a simple two-phased structure of the optimal policy and provide a PTAS for the 
Pandora’s box with nonobligatory inspection problem. 

Future and concurrent directions:

§ Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem? 

§ What happens when the cost is not additive, or if we allow selection of multiple boxes 
subject to feasibility constraints? 

§ Could we model the fact that we could often inspect an option in different ways (e.g. 
online research, in person campus visit)? 

§ What would be the effect of risk aversion on the Pandora’s box problem? 



We show a simple two-phased structure of the optimal policy and provide a PTAS for the 
Pandora’s box with nonobligatory inspection problem. 

Future and concurrent directions:

§ Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem? 

§ What happens when the cost is not additive, or if we allow selection of multiple boxes 
subject to feasibility constraints? 

§ Could we model the fact that we could often inspect an option in different ways (e.g. 
online research, in person campus visit)? 

§ What would be the effect of risk aversion on the Pandora’s box problem? 



We show a simple two-phased structure of the optimal policy and provide a PTAS for the 
Pandora’s box with nonobligatory inspection problem. 

Future and concurrent directions:

§ Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem? 

§ What happens when the cost is not additive, or if we allow selection of multiple boxes 
subject to feasibility constraints? 

§ Could we model the fact that we could often inspect an option in different ways (e.g. 
online research, in person campus visit)? 

§ What would be the effect of risk aversion on the Pandora’s box problem? 



We show a simple two-phased structure of the optimal policy and provide a PTAS for the 
Pandora’s box with nonobligatory inspection problem. 

Future and concurrent directions:

§ Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem? 

§ What happens when the cost is not additive, or if we allow selection of multiple boxes 
subject to feasibility constraints? 

§ Could we model the fact that we could often inspect an option in different ways (e.g. 
online research, in person campus visit)? 

§ What would be the effect of risk aversion on the Pandora’s box problem? 



We show a simple two-phased structure of the optimal policy and provide a PTAS for the 
Pandora’s box with nonobligatory inspection problem. 

Future and concurrent directions:

§ Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem? 

§ What happens when the cost is not additive, or if we allow selection of multiple boxes 
subject to feasibility constraints? 

§ Could we model the fact that we could often inspect an option in different ways (e.g. 
online research, in person campus visit)? 

§ What would be the effect of risk aversion on the Pandora’s box problem? 



We show a simple two-phased structure of the optimal policy and provide a PTAS for the 
Pandora’s box with nonobligatory inspection problem. 

Future and concurrent directions:

§ Does there exists a FPTAS for the Pandora’s box with nonobligatory inspection problem? 

§ What happens when the cost is not additive, or if we allow selection of multiple boxes 
subject to feasibility constraints? 

§ Could we model the fact that we could often inspect an option in different ways (e.g. 
online research, in person campus visit)? 

§ What would be the effect of risk aversion on the Pandora’s box problem? 




