The Short-Side Advantage in Random Matching Markets

Linda Cai **Clayton Thomas**Princeton University

Overview

- Stable matching market
 - "Doctors" being matched to "hospitals"
 - ► Each agent has preferences >_d over the other side
 - ► Stability of μ : No unmatched d, h with $h \succ_d \mu(d), d \succ_h \mu(h)$

- [Ashlagi, Kanoria, Leshno 17]: imbalance in the number of agents on each side profoundly effects (average behaviour of) these matchings
 - ► Even with n doctors and n + 1 hospitals
- Our paper: a simple proof of (some of) their results

Introduction

Background

- Stable matching markets
 - ► Stability of μ : No unmatched d, h with $h \succ_d \mu(d)$, $d \succ_h \mu(h)$
- Critical in real world two-sided markets
 - ► Stability prevents "market unraveling" [Roth 2002]
- A vast classic literature investigates structure
 - ► [Gale and Shapley 1962], [Knuth 77], [Gusfield and Irving 89]
- Always exists a stable matching. In fact, there can be many
- How do we pick one?

Background

- In practice: doctor-optimal stable matching used
 - (It turns out this is unique)
- Computed via doctor-proposing Deferred Acceptance (DA): (Until everyone matched): Doctors "propose" in order of their preference list, hospitals "tentatively accept" their highest-preference proposal they receive
- Advantages:
 - Simple and fast algorithm
 - Good incentive properties
- Still, choice of doctor-proposing feels arbitrary...

What matters for the matching?

- How different are the doctor and hospital optimal matchings?
- What determines who gets matched where?

What matters for the matching?

- [Wilson 72, Pittel 88 & 89]: what matters is who is proposing
 - Consider n doctors ranking each of n hospitals
 - Consider (uniformly) random preference lists
 - ► Proposers get their log *n*th choice, receivers get $n/\log n$
 - ► Set of stable matchings is large: Agents have log *n* stable partners on average
- [Immorlica-Mahdian 05 & 15]: what matters is the length of preference lists
 - Motivated by fact that markets are too big to rank everyone
 - ► If each agent ranks k = O(1) others (uniformly), then agents have unique stable partners w.h.p.
 - ► Doesn't matter who proposes!
- [Ashlagi-Kanoria-Leshno 2017]: what matters is the balance of the market

[AKL]

- [Ashlagi-Kanoria-Leshno 2017]:
 - ► Say n doctors and n + 1 hospitals
 - All doctors rank all hospitals (and vice-versa)
 - ► Theorem: Agents have unique stable partners w.h.p.
 - ► **Theorem:** Doctors get $O(\log n)$ th choice, hospitals get $O(n/\log n)$ th, regardless of who proposes

(Doctor's \mathbb{E} [rank])	Doctor-optimal	Hospital-optimal
$n \times n$	$O(\log n)$	$O(n/\log n)$
$n \times (n+1)$	$O(\log n)$	$O(\log n)$

- Agents on the short side at a large advantage
- Our contribution: simpler proofs!

Intuition

Deferred Acceptance

- Proposing-side "proposes" in order of their preferences
- Receiving-side "keeps the best proposal they've seen so far"
 - "Rejected" agents keep proposing
- Repeat (until all proposers matched or exhaust pref list)
 - Only way a proposer can go unmatched is if they are rejected by their entire list

$$h_1 - d_1 d_2$$
 $h_2 - d_3 d_4$
 $h_4 - d_3 d_4$

Intuition: a sharp transition

- Consider hospital proposing DA
 - ► Imagine each proposal made at random "online"
- If n hospitals propose to n doctors, (balanced)
 terminate when every doctor receives a proposal
- If n + 1 hospitals propose to n doctors, (unbalanced)
 terminate when some specific hospital proposes to every doctor
 - No hospital wants to go unmatched, creating "congestion"

Proof

Balanced Case

- Analysis with *n* doctors proposing to *n* hospitals:
 - ► Imagine each proposal made at random "online"
 - ▶ DA terminates when all *n* hospitals receive a proposal
 - When i hospital have receive a proposal, the next proposal goes to a new hospital with probability (n-i)/n
 - ► (Coupon collector)
 - ► In expectation, this take total proposals:

$$\frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1} = n \cdot H_n \approx n \log n$$

► Thus, log *n* proposals (i.e. average rank) per doctor

Lemma: [Immorlica, Mahdian 05]

- (Rural Hospital / Lone Wolf) Theorem: the set of matched agents is the same in ever stable matching
- Proposition: A hospital h has a stable parter of rank better than i ← In (doctor proposing) DA, h receives a match even if h truncates their list after rank i
 - (\iff) (Fairly easy to check) if h matched and μ stable for truncated preferences, then μ stable for original prefs
 - lacktriangle (\Longrightarrow) Similar, using Rural Hospital Theorem

h: d₁,... d₁, 1/4/,///

Lemma: [Immorlica, Mahdian 05]

- (Rural Hospital / Lone Wolf) Theorem: the set of matched agents is the same in ever stable matching
- Proposition: A hospital h has a stable parter of rank better than i ← In (doctor proposing) DA, h receives a match even if h truncates their list after rank i
- **Lemma:** Consider doctor-proposing DA, where *h* truncates their entire list. Then *h*'s rank in hospital optimal match is the rank of the best proposal they receive.

Main Proof

- **Lemma:** Consider doctor-proposing DA, where *h truncates* their entire list. Then *h*'s rank in *hospital optimal* match is the rank of the best proposal they receive.
- Consider n (proposing side) doctors and n + 1 hospital
- If h's list is empty, DA behaves essentially like the balanced case
 - ► Terminates when *n* distinct non-*h* hospitals proposed to
 - ▶ $n \log n$ proposals total, i.e. $\log n$ per hospital
- In expectation, the best of these $\log n$ random proposals is h's rank $(n/\log n)$ th choice
- \implies **Theorem:** hospital get no better than $n/\log n$, even in hospital optimal outcome

Extensions

- New question: number of distinct stable partners?
- Consider n (proposing side) doctors and n + 1 hospital
- Consider DA, where h truncates their entire list
- $\implies \mathbb{P}[h]$ has multiple stable partners] = $\mathbb{P}[h's]$ favorite prop came after n-1 hospital prop'ed to]
 - ▶ In expectation, $\Omega(\log(n))$ proposals before n-1 hospitals proposed to, and O(1) proposals after
 - $\blacktriangleright \implies \mathbb{P}\left[\cdot\right] = O(1/\log n)$
- Theorem: An agent has a unique stable partner w.h.p.
- (From here you can also bound doctor's ranks)

Another intuition

- With n doctors and n + 1 hospitals, a hospital is essentially unneeded to form the matching
 - ► Settles for a partner "only log n better than random"
- [AKL] study "gap between doctor and hospital optimal"
 - Very powerful but complicated
- Our proof directly studies the hospital optimal

Conclusion

- Lots of factors effect the market!
 - Our focus: balance.
 - Mentioned short lists
- [Kanoria, Min, Qian 20]: Short lists and imbalance
- [Gimbert, Mathieu, Mauras 20],
 [Ashlagi, Braverman, Saberi, Thomas, Zhao 21]:
 models of a-priori quality of agents
- [Beyhaghi, Tardos 21]: interview matchings
- Still gaps in our understanding!
 - Motivating question: why do people apply to "a few reach schools, several reasonable choices, and a safety school"?